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Optimal discriminant analysis (ODA) is often used to compare values of 
one (or more) attributes between two (or more) groups of observations 
with respect to a fixed discriminant threshold that maximizes accuracy 
normed against chance for the sample.1-29 However, a recent study using 
a matched-pairs design found that using a relative discriminant threshold 
to assess an (exploratory or confirmatory) a priori hypothesis separately 
for each pair of observations can identify inter-group differences which 
otherwise are too subtle to be identified by using fixed thresholds.30 The 
present investigation replicates the finding regarding efficacy of relative 
thresholds for matched-pairs designs, this time for a randomized blocks 
design consisting of two patient groups (one group assigned to take an 
antidepressant drug, the other group assigned to take a placebo) between 
which a numerical measure of depression was compared.31 Several rec-
ommendations are made concerning use of improved modern optimal 
statistical alternatives for this class of experimental design. 

 
 
 

Fleiss presents an example of a randomized 
blocks (matched-pairs) experiment comparing 
scores on a depression measure for 60 patients 
formed into 30 pairs matched on gender, age 
(within one decade for females, or two decades 
for males), and time of study entry (within one 
month).31 Data are given by pair in Table 1: the 
first value in each row is score on the Hamilton 
depression scale (higher scores indicate worse 
depression) for the patient in the Imipramine 
condition; the second value is the depression 
score for the paired patient in the Placebo con-

dition; and the third value is the difference 
between these scores—a negative difference 
indicates the patient in the Placebo condition 
has a higher depression score (is more 
depressed) than the patient in the Imipramine 
condition). In the Table, the pairs were first 
sorted in order of increasing depression score 
for the patient in the Imipramine condition; for 
tied scores, data were sorted a second time by 
increasing depression score for the patient in the 
Placebo condition. 
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Table 1: Hamilton Depression Scale Scores 
of 60 Patients in 30 Matched Pairs31 

                                                           Relative  
              Group                                 Threshold 

Imipramine Placebo I-P I<P I<P 

  3   3  0 1 0 
  3   8 -5 1 1 
  3   9 -6 1 1 
  4   3  1 0 0 
  4   5  1 1 1 
  4   6  1 1 1 
  4   7  1 1 1 
  4   7  1 1 1 
  5   2  3 0 0 
  5   6 -1 1 1 
  5   8 -3 1 1 
  5 11 -6 1 1 
  6   4  2 0 0 
  6   8 -2 1 1 
  6   8 -2 1 1 
  6   9 -3 1 1 
  6 11 -5 1 1 
  6 12 -6 1 1 
  7   5  2 0 0 
  7   7  0 1 0 
  7 10 -3 1 1 
  7 10 -3 1 1 
  8   8  0 1 0 
  8   9 -1 1 1 
  8 11 -3 1 1 
  9   7  2 0 0 
10   5  5 0 0 
10 10  0 1 0 
11   9  2 0 0 
12   9  3 0 0 

Classic Analytic Approaches 

There are three common classic approaches to 
statistical analysis for designs in which there are 
matched pairs or grouped (blocked) data. The 
first approach is using the paired t-test which 
requires the usual assumptions of linear mod-
els—a sufficient sample size and normal distri-

bution of the data. Using a paired t-test we 
derived a mean difference of -1.267 between 
groups (95% CI: -2.36, -0.17), p<0.025.  
 The second approach is a non-parametric 
Wilcoxon signed-rank test32 which tests equality 
of matched pairs of observations (the null hy-
pothesis is that the distributions are the same). 
Using this test we obtain p<0.027. 
 A third approach, an extension of the 
Wilcoxon signed-rank test, is the Hodges-
Lehmann treatment effects estimator with 
distribution-free confidence intervals.33 This 
method entails estimating the average difference 
in outcomes (x-y) for all n(n+1)/2 possible pairs 
and then deriving the overall median of all 
averages (the Hodges-Lehmann estimator). 
Using this approach, we derive a median 
difference estimate of -1.5 (95% CI: -2.5, 0). 
 All three approaches were computed 
using Stata (StataCorp. 2017. Stata Statistical 

Software: Release 15. College Station, TX: 
StataCorp LLC). The Hodges-Lehmann model 
was estimated using the user-written module 
ALIGNEDPAIRS.34 

ODA Fixed Discriminant Threshold 

Hamilton scale scores (Table 1) were compared 
between Imipramine vs. Placebo patient groups 
via exploratory ODA using fixed discriminant 
threshold values.35 Analysis identified a training 
model (if score<6 predict group=Imipramine, 
otherwise predict group=Placebo) which yielded 
marginally significant (p<0.090) moderate 
effect strength (ESS=30.0). 
 A directional fixed-threshold ODA was 
also conducted to test the a priori confirmatory 
hypothesis that patients in the Imipramine group 
would have lower Hamilton depression scores 
than patients in the Placebo group. The same 
model (and associated ESS) identified in non-
directional training analysis also emerged in 
confirmatory analysis, however the effect was 
statistically significant (p<0.043). One-sample 
(leave-one-out, or LOO) cross-generalizability 
analysis revealed that while model sensitivity in 
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predicting Imipramine patients was unchanged 
in training and LOO analysis, LOO sensitivity 
for Placebo patients fell (from 70% in training) 
to 56.7%, yielding a relatively weak (ESS=16.7) 
statistically insignificant (p<0.16) effect. 

Thus, assessed via a fixed discriminant 
threshold applied to the entire sample, scores on 
the Hamilton Scale were unable to reproducibly 
discriminate Imipramine vs. Placebo patients. 
This is due to misclassification of Imipramine 
group patients having scores at or near (i.e., 5-7) 
the model threshold (6 points)—which is half of 
the maximum observed score (12 points, Table 
1). Only if it is hypothesized that Imipramine 
patients had lower depression scores than Pla-
cebo patients, and if only training results are of 
interest, then the moderate training effect (ESS= 
30) was statistically significant (p<0.043). 

ODA Relative Discriminant Threshold 

Two directional hypotheses and corresponding 
relative threshold criteria used to evaluate each 
pairwise comparison are: (1) the Hamilton scale 
score of the Imipramine patient is less than or 
equal to the Hamilton scale score of the Placebo 
patient; and (2) the Hamilton scale score of the 
Imipramine patient is strictly less than the Ham-
ilton scale score of the Placebo patient. 
 As seen in Table 1, by the first criterion 
22 of 30 Imipramine patients had a Hamilton 
scale score which was less than or equal to the 
corresponding score of the paired Placebo pa-
tient. If it is assumed that Hamilton scale score 
is a uniform random variable then p(success)= 
0.50 for each pair, and the binomial probability 
of 22 successes in 30 trials is p<0.00545. By the 
second criterion, 18 of 30 Imipramine patients 
had a Hamilton scale score which was strictly 
less than the corresponding score of the paired 
Placebo patient (p<0.0806). 

Comments 

As is often the case, using alternative statistical 
methods produced different analytic conclu-

sions.36 Considering legacy methods first, the 
parametric paired t-test found a statistically sig-
nificant difference in mean depression scores 
between Imipramine vs. Placebo groups—but 
Table 1 indicates markedly skewed data for the 
former group thereby invalidating the assumed 
normality and calling into question the validity 
of the obtained p-value. While non-parametric 
Wilcoxon signed-rank test37,38 found depression 
scores of Imipramine patients had significantly 
lower ranks vs. matched Placebo patients, distri-
bution-free confidence intervals for the Hodges-
Lehmann treatment effects estimator indicated 
this effect overlapped zero—thereby indicating 
a non-significant difference. 

Next consider the findings obtained via 
ODA. First, for a fixed discriminant threshold a 
marginal training effect emerged in exploratory 
analysis, and a significant training effect in con-

firmatory analysis—which became insignificant 
in LOO analysis due to misclassification of  Imi-
pramine patients with depression scores near the 
threshold. Thus, while the confirmatory model 
explains results obtained for the present sample, 
comparable predictive accuracy is not expected 
by applying the identical threshold to classify an 
independent random sample. Second, for a rela-

tive threshold, a statistically significant effect 
was obtained for the hypothesis that depression 
scores of Imipramine patients were less than or 
equal to (never greater than) depression scores 
of matched Placebo patients, and a marginally 
significant effect emerged if it was hypothesized 
that depression scores of Imipramine patients 
were strictly lower (always less) than depression 
scores of matched Placebo patients. 

Which analytic finding should be used? 
The answer to this question depends upon the 
conceptual orientation of the researcher. If one 
justifies on a theoretical basis that means are the 
appropriate moment with which to compare the 
response distributions of the groups, then t-test 
should be reported (presently the validity of the 
p-value is suspect). If one’s theoretical orienta-
tion indicates that rankings are the appropriate 
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moment to compare response distributions of 
the groups then the Wilcoxon signed-rank test 
using the Hodges-Lehmann treatment effects 
estimator should be reported (presently the con-
fidence interval for the group comparison over-
laps zero). And, if one’s theoretical orientation 
is that the appropriate way to compare response 
distributions of groups is to compare the entire 
response distributions—identify the model that 
explicitly maximizes the effect strength normed 
vs. chance, obtain exact p-values while making 
no distributional assumptions, and estimate the 
cross-generalizability of the model—then ODA 
with fixed (for robust effects) or relative (for 
subtle, pairwise effects) should be reported. 
 The study data are a good pilot sample. 
Given failure of the training effect to reproduce 
in LOO analysis for the fixed threshold model, 
and failure of the “strictly-less-than” relative 
threshold model to reach statistical significance, 
it is natural to wonder how to improve the study 
and obtain a statistically significant, moderate 
(or stronger) effect strength in cross-generali-
zability analysis (ODA routinely employs LOO 
reproducibility analysis, which isn’t available 
for the legacy methods). Achieving statistical 
significance is easily done (and thus is basically 
meaningless) by using a larger sample—the size 
is computed based on the LOO results obtained 
presently (the first axiom of novometric theory 
is the sample must provide adequate statistical 
power to test the alternative hypothesis39,40). 
Increasing the model validity effect strength is 
more challenging (and thus theoretically and/or 
translationally meaningful), requiring improving 
the measurement precision of the attribute, par-
ticularly in the response scale region close to the 
value of the fixed threshold41, and/or replacing 
the singular depression score with a battery of 
measures offering greater theoretical clarity, and 
measurement granularity and precision.42-44 
 Another, arguably the most influential 
aspect of the analysis in need of consideration, 
is the method used in the matching process—or 
blocking, as Fleiss31 states. Given that the out-

come analysis may be biased due to confound-
ing, it is imperative that the matching/blocking 
process eliminates confounding of observed co-
variates. In small samples with few covariates, 
matching directly on the available covariates 
may suffice. However, as the number of covari-
ates increases, and as their distribution differs 
between the treatment and control conditions, 
methods which stratify and weight individuals 
into blocks of the propensity score to adjust for 
observed confounding should be considered.45 

These techniques are incorporated within 
the ODA, CTA, and novometric frameworks. 46-

48 For example, in any given substantive area of 
scientific application, optimal (“maximum-
accuracy”) methods are available to assist 
researchers to obtain a clear understanding of 
the factors which must be considered as being 
potential threats to causal inference: to identify 
variables characterizing participation in both 
discretionary treatment49 and observational26 
research (i.e., to identify possible confounding 
variables), and to identify structural breaks in 
single50,51 and multiple-group52 interrupted time 
series analysis, dose-response studies53,54 and in 
research investigating mediating processes.55 
Optimal ODA and CTA methods are available 
to assist researchers to identify and correct (in 
real time) covariate interactions which exist in 
data from matched46 and randomized trials56 to 
remove otherwise undetected threats to causal 
inference. Globally-optimal (i.e., novometric) 
analysis is available to identify all statistically 
unique propensity score models that maximize 
classification accuracy and vary as a function of 
complexity, which exist within a sample:  this 
makes model misspecification impossible, and 
is used in both time-to-event and single-case 
precision forecasting.57-60 
 The present findings further illustrate 
why we strongly advocate using the ODA, CTA 
and novometric frameworks to draw causal in-
ferences about treatment effects in observational 
data and in data from randomized controlled 
trials. Clearly, changes are needed in guidelines 
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concerning how health care interventions and 
policy changes are evaluated.61,62 
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