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Abstract

Often, when conducting programme evaluations or studying the effects of policy changes,
researchers may only have access to aggregated time series data, presented as observations
spanning both the pre- and post-intervention periods. The most basic analytic model using
these data requires only a single group and models the intervention effect using repeated
measurements of the dependent variable. This model controls for regression to the mean
and is likely to detect a treatment effect if it is sufficiently large. However, many potential
sources of bias still remain. Adding one or more control groups to this model could
strengthen causal inference if the groups are comparable on pre-intervention covariates and
level and trend of the dependent variable. If this condition is not met, the validity of the
study findings could be called into question. In this paper we describe a propensity
score-based weighted regression model, which overcomes these limitations by weighting
the control groups to represent the average outcome that the treatment group would have
exhibited in the absence of the intervention. We illustrate this technique studying cigarette
sales in California before and after the passage of Proposition 99 in California in 1989.
While our results were similar to those of the Synthetic Control method, the weighting
approach has the advantage of being technically less complicated, rooted in regression
techniques familiar to most researchers, easy to implement using any basic statistical
software, may accommodate any number of treatment units, and allows for greater flex-
ibility in the choice of treatment effect estimators.

1. Introduction
Often, when conducting programme evaluations or studying the
effects of policy changes, researchers may only have access to
outcome measures reported at the aggregate level. In health care
research, these metrics generally include utilization rates of
various services (hospitalizations, emergency department, office
visits, prescription fills, etc.), medical costs (usually reported as
per-member-per-month), and mortality rates. The outcome vari-
able is typically ordered as a time series, with a number of obser-
vations captured in both the pre- and post-intervention periods.
The study design is generally referred to as an interrupted time
series because the intervention is expected to ‘interrupt’ the level
and/or trend subsequent to its introduction [1–3].

Time series analysis (TSA) is considered a relatively robust
observational study design, even in the absence of a comparison
group, due primarily to its control over the effects of regression
to the mean. Stated differently, when only two measurements are

taken (i.e. pre-post), high (or low) initial values will likely be
followed by observations closer to the average value, but over the
course of many repeated observations, this natural variability
narrows around the true mean, allowing the researcher to more
accurately estimate the treatment effect of an intervention [4,5].
Nevertheless, without a concurrent comparison group, the treat-
ment effect of a single study group may still be biased because of
selection issues or secular trends. Therefore, a TSA can be much
strengthened with the addition of one or more control groups.

As is the case with any observational study, the researcher
conducting the TSA will attempt to emulate the randomization
process of a randomized controlled trial (RCT) by finding (or
creating) a control group that is approximately equivalent to
the treatment group on known pre-intervention characteristics and
hope that the remaining unknown characteristics are inconsequen-
tial and will not bias the results [6]. When only one comparison
group is available for the TSA, conventional regression modelling
may be the only viable approach to account for pre-intervention
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differences between the groups, even though there is evidence
that these methods may provide biased results, most notably in the
presence of time-dependent confounders [7,8].

The TSA is therefore more robust when several control groups
are available, and when additional covariates (other than just the
outcome variable under study) can be used to further adjust for
differences between groups. When such data are available and a
robust evaluation is desired, one option is the synthetic control
method [9,10]. This is a recently developed technique that esti-
mates the treatment effect by comparing the trajectory of an aggre-
gate outcome for a treated unit to the evolution of the same
aggregate outcome for a synthetic control group in terms of the
outcome predictors. This synthetic control group is constructed
using a data-driven regression-based method to obtain weights for
each variable contained in the V-matrix. A constrained quadratic
programming routine is then used to find the best fitting weights
conditional on the regression-based V-matrix. A more complex yet
better-fitting algorithm can be used instead, relying on a fully
nested optimization procedure that searches among all (diagonal)
positive semi-definite V-matrices and sets of weights for the best
fitting convex combination of the control units. Once the synthetic
control group has been created, the researcher can conduct a
variety of placebo and permutation tests that produce informative
inference [11].

In this paper an alternative method for estimating the treatment
effect of an intervention using time series data is proposed. Our
analytic approach is based on a weighted modelling technique
originally developed for unit-level longitudinal studies [8,12], and
follows a three-step approach: First, the propensity score is esti-
mated for the treatment group and all potential controls [13].
Second, weights are constructed based on the propensity score and
treatment assignment, and third, these weights are then used
within a regression framework to provide a treatment effect esti-
mate. We posit that researchers may prefer the proposed analytic
method over the synthetic controls method because this approach:
(1) is technically less complicated and rooted in regression tech-
niques familiar to most researchers and can be implemented using
any basic statistical software without elaborate programming; (2)
may accommodate any number of treatment units (as opposed to
the synthetic control method which is limited to only one treatment
group); and (3) allows for greater flexibility in the choice of treat-
ment effect estimators[i.e. average treatment effects (ATEs)].

This paper is organized as follows. In section 2 we briefly
describe the dataset used for all analyses conducted here. Section
3 provides a basic tutorial on the most commonly used regression
modelling techniques for single group and multiple group inter-
rupted TSA and we then apply these models to the current data.
In section 4, we describe the propensity score-based weighting
framework applied to aggregated time series data and then apply
this model to the current data. Section 5 discusses the results of our
analyses using the models described here and compare them to
those results generated using the synthetic control method, Section
6 provides a discussion and Section 7 concludes.

2. Data
In 1988, California passed the voter-initiative Proposition 99
which was a wide-spread effort to reduce smoking rates by raising
the cigarette excise tax by 25 cents per pack and fund anti-smoking

campaigns and other related activities throughout the state (for a
comprehensive discussion of this initiative see Abadie et al. [10]).
Per-capita cigarette sales (in packs) is the most widely used indi-
cator of smoking prevalence found in the tobacco research litera-
ture [10], and serves here as the aggregate outcome variable under
study, measured at the state level from 1970 until 2000 (with 1989
representing the first year of the intervention). The current data file
was obtained from Abadie et al. [11], who originally obtained
the cigarette sales data and average retail price of cigarettes from
Orzechowski and Walker [14] and supplemented the file with the
following covariates: per-capita state personal income (logged),
the percentage of the population age 15–24, and per-capita beer
consumption (for a complete listing of data sources, see appendix
A of Abadie et al. [10]). Eleven states were discarded from the
dataset because of their adoption of some other large-scale tobacco
control programme at some point during California’s intervention
period under study between 1989 and 2000, leaving 38 states as
potential controls [10].

Several of the covariates had data missing for certain years.
Personal income was missing for years 1970, 1971, 1988–2000.
Beer consumption was missing for years 1970–1983, 1998–2000,
and the percentage of the population aged 15–24 was missing for
years 1991–2000. For exposition purposes, we filled in all missing
values using the ‘impute’ command in Stata, which runs regres-
sions by best-subset regression, looking at the pattern of missing
values in the predictor variables [15].

3. Basic regression models for
interrupted time series analysis

Single group analysis

Regression (either ordinary or generalized least-squares methods)
is the most commonly used modelling technique in interrupted
time series analyses. When there is only one group under study (no
comparison groups) the regression model assumes the following
form: [16]

Y T X TXt t t= + + +β β β β0 1 2 3 (1)

Where Yt is the aggregated outcome variable measured at each
time-point t, T is the time since the start of the study, Xt is a dummy
variable representing the intervention (pre-intervention peri-
ods = 0, otherwise 1), and TXt is an interaction term. These terms
are perhaps best explained using the lower half of Fig. 1. In the
case of a single group study, b0 represents the intercept, or starting
level of the aggregated outcome variable. b1 is the slope, or tra-
jectory of the outcome variable until the introduction of the inter-
vention. b2 represents the intercept at the time of introduction of
the intervention, and indicates whether there was a change in the
level of the outcome immediately following the introduction of the
intervention, and b3 represents the change in slope or trajectory of
the outcome after introduction of the intervention until the end of
the study. Thus, we look for significant P-values in either b2 or b3

(or both) to indicate a treatment effect. Additionally, the magnitude
of change in the outcome at any time-point after introduction of
the intervention can be expressed in either absolute or relative
terms [17,18].

Figure 2 visually displays the results of the single group TSA
conducted on per-capita cigarette sales (in packs) in California
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before and after the introduction of Proposition 99. The starting
level of the cigarette sales was estimated as 134 packs per capita,
and sales appeared to be decreasing significantly every year prior
to 1989 by -1.78 packs per capita [P < 0.0001, 95% confidence
interval (CI) = -2.22, -1.33]. In the year immediately after the
intervention (1989) there appeared to be an -18.56 packs per
capita decrease in the level of cigarette sales (P < 0.0001, 95% CI,
-26.62, -10.51) and a change in the slope (relative to the pre-
intervention slope) of the annual sales of cigarettes of -1.49 packs
per year (P = 0.005, 95% CI = -2.49, -0.50).

Also shown in Fig. 2 is a dashed-line that extends from the
pre-intervention period until the end of the observation period.

This line represents the counterfactual of what cigarette sales
would have been in California had Proposition 99 not be initiated.
We estimate from the gap between the actual cigarette sales and
the counterfactual sales that in the period between 1989 and 2000
cigarette consumption in California was reduced by an average of
28.28 packs per capita.

An important feature of time series is that of serial dependence.
Any outcome measured over time is potentially influenced by
previous observations (referred to as autocorrelation or autoregres-
sion). When using linear regression models to fit time series data, it
is important to test for autocorrelation since the error terms will
likely be positively correlated, biasing the estimated standard errors

β0 β1 (T)

β2 (X)

β3 (X * T)

β4

(Z)

β5

(Z * T)

β6

(Z * X)

β7

(Z * X * T)

Figure 1 Regression intercepts and slopes
for an interrupted time series analysis com-
paring a treatment group to control(s). T, time;
X, intervention; Z, group.
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Figure 2 Actual and model-fitted per-capita
cigarette sales (in packs) in California before
and after introduction of Proposition 99.
The broken line extending from the pre-
intervention period trend-line represents the
counterfactual of what cigarette sales would
be in California absent Proposition 99.
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downward, and thereby yielding F-tests with exaggerated signifi-
cance [16]. We used Durban’s test [19], which reported a significant
(P < 0.0001, c2 = 25.15) first-order autoregressive process (indicat-
ing autocorrelation with the most recent past value).

To correct for this, we then used the Prais–Winston estimator
[20], which implements the generalized least-squares method to
estimate the parameters, assuming the errors follow a first-order
autoregressive process. After this adjustment, there appeared to be
a 4.10 packs per capita decrease in the level of cigarette sales in the
first year after introduction of Proposition 99 (P < 0.0001, 95%
CI = -5.21, -2.98), and the change in the slope of the annual sales
of cigarettes was now -2.0 packs per year (P = 0.039, 95%
CI = -3.88, -0.11). One can conclude from a comparison of
results from the adjusted versus unadjusted models that the change
in annual cigarette sales after Proposition 99 was similar between
the two models, but the autocorrelation-adjusted model reduced
the magnitude of the change in the level of cigarette sales in the
year immediately following Proposition 99 compared with the
unadjusted regression model.

Multiple group analysis

When one or more control groups are available for comparison, the
regression model in Eq. 1 is expanded to include four additional
terms (b4–b7) [16]:

Y T X TX Z ZT ZX ZX Tt t t t t= + + + + + + +β β β β β β β β0 1 2 3 4 5 6 7 (2)

Where Z is a dummy variable to denote the cohort assignment
(treatment or control) and ZT, ZXt and ZXtT are all interaction
terms among previously described variables. Now when examin-
ing Fig. 1, the coefficients of the lower line (b0–b3) represent the
control group and the coefficients of the upper line (b4–b7) repre-
sent values of the treatment group. More specifically, b4 represents
the difference in the level (intercept) of the dependent variable
between treatment and controls prior to the intervention, b5 repre-

sents the difference in the trajectory (slope) of the dependent
variable between treatment and controls prior to the intervention,
b6 indicates the difference between treatment and control groups
in the level of the dependent variable immediately following
introduction of the intervention, and b7 represents the difference
between treatment and control groups in the trajectory of the
outcome variable after initiation of the intervention.

The two parameters (b4–b5) play a particularly important role in
establishing whether the treatment and control groups are balanced
on both the level and trajectory of the dependent variable in the
pre-intervention period. If these data were from an RCT, we would
expect there to be similar levels and slopes prior to the inter-
vention. However, in an observational study where equivalence
between groups cannot be ensured, any observed differences will
likely raise concerns about the ability to draw causal inferences
about the outcomes.

Figure 3 illustrates the actual and predicted per-capita cigarette
sales (in packs) of California and the 38 remaining states in the
dataset outside of California (as controls), before and after intro-
duction of Proposition 99, using Equation 2. The initial mean level
difference between California and the remaining states (parameter
b4) was not significant (P = 0.55, 95% CI = -7.82, 14.58), but the
difference in the mean baseline slope (parameter b5) was signifi-
cant (P = 0.007, 95% CI = -2.55, -0.414). This is verified upon
visual inspection of Fig. 3, as the trajectory of mean cigarette sales
for the 38 states appears to rise higher than in California and that
level remains elevated throughout the duration of the observation
period.

Given this differential pattern of change in the baseline, one
could argue that the 38 other states were not comparable to Cali-
fornia and thus any change in outcomes after Proposition 99 could
be biased. Additionally, one can see that the linear model does not
fit the baseline data well, calling into question the model’s ability
to accurately estimate the treatment effect parameters (b6–b7). We
estimate from the gap between the actual cigarette sales and the
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Figure 3 Actual and predicted per-capita
cigarette sales (in packs) of California and 38
other states (as controls), before and after
introduction of Proposition 99.
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predicted values of the controls states that in the period between
1989 and 2000 cigarette consumption in California was reduced
by an average of 41.71 packs per capita, much higher than what
was estimated in the single group analysis. Given the differential
pattern of change in the baseline between the two groups this gap
is somewhat misleading. In fact, neither parameter b6 nor b7 were
statistically significant (P-value for b6 was 0.68, 95% CI = -10.55,
6.92, and P-value for b7 was 0.06, 95% CI = -2.03, 0.05). Adjust-
ing for autocorrelation using the Prais–Winston estimator did not
improve these results (P-value for b6 was 0.09, 95% CI = -3.06,
0.20, and P-value for b7 was 0.53, 95% CI = -2.55, 1.31).

These results highlight the importance of ensuring that treat-
ment and control units are comparable on pre-intervention char-
acteristics – in this case, pre-intervention level and trend of the
outcome variable. Therefore, this model could be improved by
limiting the choice of control groups to only those with similar
values on these two metrics, or moving to a more comprehensive
model as described in the next section.

4. Propensity score-based weighting
approach for time series data

Estimating the propensity score

The propensity score, defined as the probability of assignment
to the treatment group conditional on covariates [13], controls
for pre-intervention differences between treated and non-treated
groups. Propensity scores are typically derived from a logistic
regression equation that reduces each participant’s set of covari-
ates to a single score. It has been demonstrated that, conditional on
this score, all observed pretreatment covariates can be considered
independent of group assignment, and in large samples, covariates
will be distributed equally in both groups and will not confound
estimated treatment effects [13].

In the propensity score model for the cigarette sales data, the
outcome variable was the treatment assignment, coded either ‘1’
for California or 0 for each of the remaining 38 states. Covariates
included the pre-intervention (1970–1988) mean values for each of
the four variables described in section 2, in addition to the mean
cigarette sales during the pre-intervention years.

Construction of weights

Traditionally, the inverse probability of treatment has been used to
construct these models [8,12]. The motivation for this originated in
the survey sciences over 50 years ago to adjust for sampling
probabilities [21] and are intended to provide an estimate of the
ATE in the population. However, in the current study we are more
interested in setting the distribution of covariates to be equal to that
of the treated subjects and then estimating the average treatment
effect on the treated (ATT). Thus, the treated group (California) is
given a weight of 1 and the non-treated states are given a weight
of the (propensity score)/(1 - propensity score) [22]. This ATT
weighting mechanism makes the control group’s outcomes repre-
sent the counterfactual outcomes of the treatment group by making
the two groups similar with respect to observable pre-intervention
characteristics (those variables included in the propensity score
model) [22]. This ensures that balance is achieved between the
treated and non-treated groups on pre-intervention characteristics

and provides us with greater confidence that treatment effect esti-
mates derived from observational data are unbiased (presuming
that all sources of bias were accounted for in the estimated
propensity score) [23].

Regression model estimation

Unbiased treatment effects can be estimated by fitting the appro-
priate regression model using the ATT weight (for example, in the
Stata software package one would specify the ATT weight as either
an analytic weight or sampling weight). Like any other outcome
variable, the choice of regression model depends on the distribu-
tion of the outcome variable. This can be logistic regression for
dichotomous variables, ordinary least squares (OLS) for continu-
ous variables, Poisson for rates or rare events, and Cox regression
for survival or censored cases. Some researchers prefer the use of
generalized linear modelling (GLM) for its flexible distributional
assumptions [24]. Regardless of which of these traditional regres-
sion models are used, standard errors must be adjusted to correct
for within-subject correlation by either clustering at the individual
level (the states) or using robust standard errors [25]. Alternatively,
evaluators can choose from among more complex models specifi-
cally designed to account for within-subject (or group) correlation
in longitudinal data).

After reviewing the distribution of cigarette sales using actual
and various transformations (including separate analyses for pre-
and post-intervention periods), we could not definitively conclude
which model type was most suitable to fit the data. We therefore
ran several GLM models specifying various distributional families
paired with compatible link functions, followed by inspection of
model output, Akaike’s information criterion and graphic displays.
Given that the relative treatment effect was similar in all models,
we present the results using the standard OLS model. This allows
us to keep the outcome variable on the original scale and directly
compare the results of this analytic approach with that of the
synthetic controls method.

Figure 4 illustrates the difference and 95% confidence intervals
in annual cigarette sales for California over the other 38 states in
the dataset using the ATT weights in the model estimation. As
shown, the weighting mechanism provided good balance on the
outcome variable in the pre-intervention years with all of the
treatment effect confidence intervals crossing zero. Starting in
1990 California’s cigarette sales dropped significantly below that
of the other states and continued to drop until the end of the study
in 2000. It should be noted that these confidence intervals may be
inaccurate given that asymptotic limit theorems are being applied
to a single treatment unit and a small number of controls. A
perhaps more suitable approach would be to utilize a mixed model,
which would estimate the random effects of the dependent variable
for each state (over the years under study), and estimate the treat-
ment effect as a fixed effect in the model. This is a more compli-
cated approach and currently few software packages allow for the
inclusion of weights in their mixed model procedures.

We estimate from the difference between the actual cigarette
sales in California and the predicted values of the weighted control
that in the period between 1989 and 2000 cigarette consumption in
California was reduced by an average of 24.54 packs per capita. In
summary, the analytic approach proposed here to evaluate the
effect of an intervention using time series data involves a weighted
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regression of the aggregate outcome variable on treatment with the
control group weighted to represent the average outcome that the
treatment group would have exhibited in the absence of the inter-
vention. When applying this model to the cigarette sales data,
Proposition 99 appeared to have a significant effect commencing
two years after the initiative was instated and continuing until the
end of the study period.

5. Comparison of the various models
In reviewing the cigarette sales data results using the basic TSA
models reported in section 3, an important limitation of these
techniques became apparent. In the single-group model, a statisti-
cally significant treatment effect was found in the year immedi-
ately following the introduction of Proposition 99 as well as in
the trajectory of sales until the end of the observation period.
However, when California was compared with the other 38 states
in the dataset, this treatment effect disappeared. Various arguments
(both statistical and based on content knowledge) could be made in
favour of one or the other model’s findings. However, one could
easily point out that in the multiple-group model, the groups were
not comparable on the baseline slope, and thus the treatment effect
estimates are suspect.

The propensity score-based weighting approach described in
section 4 overcomes these limitations by making the two groups
similar with respect to observable pre-intervention characteristics
and thereby allowing for the estimation of unbiased treatment
effects. The results from this model suggested that Proposition 99
indeed led to a significant reduction in cigarette sales in California.

We compared the results derived from our weighted regression
approach to that of the synthetic control method [9,10] using
identical predictor criteria. That is, we specified that the means of
pre-intervention periods for all four covariates and the outcome
variable be used to construct the synthetic control group. Figure 5

provides a visual comparison of the two models versus California
over the course of the study period. The two techniques appear to
track closely to each other along the entire continuum of observa-
tions, with the weighted model providing slightly lower estimates
throughout. In relation to how the two models compared with
California in the pre-intervention period, we see that between 1970
and 1979 the synthetic control group tracked closer to California
than the weighted controls, and between 1980 and 1989 the
weighted controls tracked closer to California than the synthetic
controls. The two models provided very similar estimates for the
intervention period. In fact, in comparing the gaps difference
between actual sales in California to those of controls (from either
model), we found that the difference between the two models in
the estimated reduction of cigarette sales between 1989 and 2000
was only 1.55 packs (-26.09 for synthetic controls versus -24.54
for weighted controls).

We additionally compared the balance achieved on each of the
predictor variables between California and both the synthetic and
weighted control models. The synthetic controls achieved a mean
percentage error (MPE) [4] close to zero and the weighted controls
attained a very low MPE of 1.35% (data not shown).

6. Discussion
As illustrated in this paper, the ability to draw causal inferences
about a treatment effect in observational time series data improves
when a comparable control group is available (the groups similar
with respect to observable pre-intervention characteristics). More-
over, it was shown that the propensity score-based weighting
approach achieved similar results to that of the synthetic control
method, inarguably, a very robust modelling approach to observa-
tional time series data.

We posit that researchers may prefer the weighted proposed
analytic method over the synthetic controls method for several
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reasons. First, the weighting approach is technically less compli-
cated than the synthetic control method and rooted in the familiar
regression framework. This means that the analytic process is
easier to comprehend, perform, interpret and describe. Moreover,
no special programming is required and the method can be imple-
mented in any basic statistical software package.

Second, the weighting approach can easily accommodate any
number of treatment units. Conversely, the synthetic controls algo-
rithm only allows a single unit to be specified. If the intervention
of interest affects several units, the researcher must first combine
these units and then treat them as a single unit [11].

Third, the weighting approach allows for greater flexibility in
the choice of treatment effect estimators. In the current study we
used the ATT; however, the researcher can choose among other
estimators as well, such as the ATE, which sets the distribution of
covariates to be equal to that of the population, or the ATE on
the controls, which sets the distribution of covariates to be equal to
that of the control group [22].

While the current weighting approach has demonstrated its
robustness, there are at least a couple ways in which the model
could be strengthened. Boosted logistic regression [26] is worth
considering as an alternative to the standard logistic model in
estimating the propensity score. Regression boosting is a general,
automated, data-adaptive modelling algorithm that can estimate
the nonlinear relationship between the outcome variable (in this
case, treatment assignment) and a large number of covariates
including multiple level interaction terms resulting in greater accu-
racy over standard linear models [27].

Inferences about intervention effect

Abadie et al. [9,10] suggest that large sample inferential tech-
niques are not well-suited to comparative case studies when the
number of units in the comparison group and the number of

periods in the sample are relatively small. They instead propose the
use of placebo studies to draw inferences regarding treatment
effect estimates. This method consists of iteratively casting
non-treated States into the role of ‘treated’ and then applying the
synthetic control method. The estimated gap between each of these
‘treated’ states and their synthetic controls provides an indication
of whether the magnitude of the effect in California was meaning-
ful. More specifically, one would not expect to see substantial gaps
when comparing between non-treated states, but would expect a
comparatively larger gap in California to its synthetic control,
relative to the gaps in the placebo studies [9,10]. This inferential
approach can be readily applied it to the weighting model as well,
simply by recasting each non-treated unit iteratively as ‘treated’
within the propensity score estimation model and then rerunning
the weighted regression on the outcome as usual.

The cigarette sales results from our weighted regression analy-
sis (relying on the usual asymptotic limit theorems for inference
implicit in this model) are in accord with the results generated
using the synthetic control technique (see Fig. 4). The advantage
here is that familiar statistical measures are provided and readily
interpreted. As discussed previously a mixed modelling approach
(which allows for the inclusion of weights) may offer more accu-
rate confidence intervals.

Limitations of the propensity score-based
weighting technique in time series data

As with any evaluation of observational data, the foremost limita-
tion is that we presume that all biases and confounding have been
adjusted for in the model, an assumption that cannot be tested
outside of a randomized study. Also the control states available for
the comparison must have substantial overlap with the treatment
state. For example, if California had the highest use rate in the
nation there would be no way to weight a combination of other
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Figure 5 Comparison of actual cigarette
sales in California to weighted controls and
synthetic controls before and after Proposi-
tion 99.
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states to make a comparable set. This problem can also occur for
other covariates used in the model as well.

7. Conclusion
In this paper we have described several approaches to conducting
interrupted TSA. The most basic model requires only a single
group and models the intervention effect using repeated measure-
ments of the dependent variable. This model controls for regres-
sion to the mean and is likely to detect a treatment if effect if it is
sufficiently large. However, many potential sources of bias still
remain. Adding a control group to this model could strengthen
causal inference if the groups are comparable on the baseline level
and trajectory of the dependent variable. If this condition is not
met, the validity of the study findings could still be called into
question, as occurred here with the cigarette sales data.

The propensity score-based weighted regression model
described here overcomes these limitations by weighting the
control group to represent the average outcome that the treatment
group would have exhibited in the absence of the intervention.
This weighted model approach was comparable to the synthetic
control method in studying the effect of Proposition 99 on ciga-
rette sales in California. However, this approach has the advantage
of being technically less complicated, rooted in regression tech-
niques familiar to most researchers, easy to implement using
any basic statistical software without additional programming,
may accommodate any number of treatment units, and allows for
greater flexibility in the choice of treatment effect estimators.
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