
This material is
the copyright of the
original publisher.

Unauthorised copying
and distribution

is prohibited.

Dis Manage Health Outcomes 2007; 15 (1): 7-12LEADING ARTICLE 1173-8790/07/0001-0007/$44.95/0

 2007 Adis Data Information BV. All rights reserved.

Estimating the Effect of Regression to the Mean
in Health Management Programs
Ariel Linden1,2 

1 Linden Consulting Group, Portland, Oregon, USA
2 School of Medicine and School of Nursing, Oregon Health & Science University, Portland, Oregon, USA

Most health management programs, such as disease management or health promotion/wellness interventions,Abstract
implement targeted interventions for an identified high-risk group, leaving the remaining non-managed lower-
risk population as controls. This is problematic from an outcomes perspective because individuals initially
identified by their high-risk scores will inevitably have lower average scores on remeasurement, even in the
absence of a health management program. This statistical phenomenon is called regression to the mean (RTM).
This article presents actual examples of RTM, describes the classic method for estimating the impact of RTM in
a pre-post study, and provides suggestions for designing health management program evaluations to mitigate the
effects of RTM.

Most health management programs, such as disease manage- RTM is the result of random fluctuation or non-systematic error
ment (DM) or health promotion/wellness interventions, are imple- in repeated measurement. A simple example of this occurs in
mented at the population level. Generally, a target population is measuring blood pressure or heart rate. Rarely are any two obser-
first determined and then individuals at highest risk within that vations identical, even if taken minutes apart. At the individual
population are identified. Those persons are then invited to enroll level this is called within-subject variability. Within this construct,
in an intensive intervention aimed at improving their health. In higher (or lower) initial values are likely to be followed by an
DM, ‘high risk’ typically refers to individuals who have accrued observation closer to the person’s average value or score. Over the
high medical costs in the past year, whereas wellness programs course of many repeated observations, this variability narrows
may classify ‘risk’ based on health survey results or current around the true mean.[3,4] Grouping individuals according to their
clinical indicators (e.g. blood pressure, laboratory test values). initial outlier measurement exacerbates the effect of RTM. Similar

Given this type of program design, the ability to employ con- to individual level measures, groups with high (or low) initial
trolled evaluation studies is limited. Most individuals identified as

mean values will tend to regress to the mean of the overall group.
high risk enroll in the program intervention at some point, leaving

Thus, in the evaluation of a pre-post study, the researcher must be
the remaining non-managed lower-risk population as controls.

able to separate the RTM effect from the true treatment effect in
This is problematic from an outcomes perspective because a group

order to accurately determine the effectiveness of the intervention.
initially identified by their high-risk scores will inevitably have

The implications of RTM on the measurement of specificlower average scores on remeasurement, even in the absence of a
health-related outcomes has been examined extensively in thehealth management program. This statistical phenomenon, origi-
literature and has substantiated the need to address RTM.[5-16]nally termed ‘regression toward mediocrity’, was described over a
However, this concern is rarely addressed in pre-post programcentury ago by Sir Francis Galton upon discovering that on aver-
evaluations of health management programs. Consequentially,age, tall parents had children shorter themselves and short parents
RTM remains a major source of bias pervasive in the evaluationhad taller children.[1] An excellent historical review of regression

to the mean (RTM) is provided by Stigler.[2] designs of the industry.[17]
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This article begins by presenting real examples of RTM to the impact on costs would have wrongly concluded that this
illustrate the phenomenon. Next, the classic method for estimating outcome was a program effect.
the impact of RTM in a pre-post study will be described so that this Figure 2 presents physical component summary (PCS) scores
technique can be easily replicated in health management pro- from the short form-12 (SF-12) health status survey[18] for a
grams. Finally, suggestions will be presented for designing health control group from a study conducted at a large organization in the
management program evaluations to mitigate, or at least account Northwest of the US.[19] Scale values are standardized from 0 to
for, the effects of RTM. 100, with higher values indicating better physical health. For

illustrative purposes, the high-risk group is classified as having a
PCS score of <44.25, which corresponds to the 25th percentile at1. Real Examples of Regression to the Mean (RTM)
the US national level.[20] Control group participants were surveyed
twice: once at program commencement and then again at 3

RTM can easily be mistaken for a program effect in the absence
months. They received no intervention. As shown, the high-risk

of an equivalent control group. The best approaches to illustrate
group increased their PCS score by >8 points (22.6%), while the

the effect of RTM are either by using observations taken from time
lower-risk group remained unchanged. Once again these findings

periods in which no health management programs were imple-
clearly illustrate an RTM effect, as the high-risk group had a mean

mented or by using control-group data derived from a research
value on remeasurement that was closer to the overall mean.

study. In this section, both situations will be presented.

Figure 1 presents the average annual costs (adjusted to 2005
2. Estimating the Effect of RTM

values) of all health plan members with coronary artery disease
(CAD) who were continuously enrolled for 4 years (2001–4) in a

As demonstrated in the previous section, RTM poses a serious
medium-sized California health plan. Over this period no health

threat to the validity of any pre-post evaluation. While a number of
management programs were introduced. The high-risk group is

statistical models have been produced to account for the magni-
comprised of members originally identified as being in the top

tude of the RTM effect,[3,21-34] the most widely used model was
quintile in costs for 2001 and the low-risk group includes everyone

developed more than 30 years ago.[3,21] The model uses an itera-
else during that initial measurement year. As shown, mean costs

tive, which begins by calculating the z-score (equation 1):
for that high-risk group dropped precipitously from 2001 to 2002
(by approximately $US24 000), while mean costs of the remaining ( )/−= κ µ σz

members during that same period rose by only $US920. This (Eq. 1)
scenario perfectly illustrates the effect of RTM. Had a DM pro- where µ is the baseline population mean, σ is the standard devia-
gram targeting CAD existed during this period, an evaluation of tion (SD) of the entire sample, and κ is the cutoff score represent-

ing the high-risk or target group value. Next, the c-statistic is
calculated (equation 2):

( ) ( )[ ]( )zzϕ φc −= 1/

(Eq. 2)

where ϕ(z) is the probability density function for z, and (z) is the
cumulative distribution function for z. The expected first measure-
ment value for the target group is calculated as (equation 3):

Expected first mean value = µ + (cσ)

(Eq. 3)

The expected value of the follow-up measurement is (equation 4):
Expected second mean value = µ + (cσρ)

(Eq. 4)

where ρ is the Pearson within-subject correlation between all
values of both periods. Thus, the expected RTM effect is given by
subtracting the expected first measurement value from the second
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Fig. 1. Annual costs of coronary artery disease patients who were enrolled
in a health plan for 4 continuous years. The high-risk group is comprised of
the top quintile in costs for 2001 and the low-risk group includes everyone
else during that initial measurement year. All costs are adjusted to 2005
values.
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transformed values (1.89), and correlation between first and sec-

ond year transformed observations (0.27) were calculated. The

cutoff value was set as the first observation of the transformed fifth

quintile = 9.40. Thus, z = 0.95, c = 1.48, the expected 2001 high-

risk group transformed mean = 10.4 (untransformed =

$US33 199), and the expected 2002 high-risk group transformed

mean = 8.4 (untransformed = $US4245). As shown in figure 3, the

2002 expected high-risk group untransformed mean value is simi-

lar to the actual 2002 observation ($US3932), while the expected

2001 untransformed mean value is higher than the actual observa-

tion ($US28 000). This difference is most likely explained by the

few outlier costs that even log transformation could not smooth

out. Nonetheless, the model appears to predict the estimated RTM

effect in the high-risk category rather well.

Some health management programs contend that even though
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Fig. 2. Physical component summary (PCS) scores on the short form-12
from a control group participating in a health coaching study.[19] Scale
values are standardized from 0 to 100, with higher values indicating better
physical health. All participants were surveyed twice: once at program
commencement and then again at 3 months. Squares represent mean
scores.

they do not directly intervene on the low-risk group, the costs of

this group are impacted by influencing physician behavior vis-à-(or vice versa, depending on the expected direction of the varia-
vis a ‘spill-over’ effect from the high-risk group (e.g. complyingble).
with guidelines). Using the RTM model we can easily estimateGiven that this is a statistical model, program administrators
this effect in the low-risk group by modifying the z-score so thatand evaluators should be cognizant of factors that can influence
the cutoff value is subtracted from the mean (as compared with thethe results of these calculations. For example, the RTM effect

increases as a function of increased variability in the measure high-risk group where the mean is subtracted from the cutoff
under study. Additionally, the further the cutoff point is from the value). Thus, z = –0.95, c = 0.31, the expected 2001 low-risk group
mean and the weaker the correlation is between pre-post measure- mean = $US1127, and the expected 2002 low-risk group mean =
ments, the greater the RTM effect is. More often than not, both $US1726. As shown in figure 3, both these estimated values are
factors will move in tandem, so that setting the cutoff score closer similar to their actual observations, indicating that this model
to the mean will increase the correlation between measurement works well to predict the RTM effect for the low-risk group.
periods. However, it may not be reasonable to change the cutoff
point as it may be set to a level intended to identify a certain
percentage of the population at risk.

Another concern is with the distribution of the outcome varia-
ble under study. This model was developed for normally distribut-
ed data, and, therefore, may produce spurious results with non-
normal data. While other models have been developed to deal with
non-normal distributions,[28,32] transforming the data (i.e. loga-
rithms) before using the model presented here may suffice.

3. Applying the RTM Model to Health Management

To demonstrate the applicability of this model to a health
management program, we will revisit the 2001–2 data used in
figure 1. A test for normality[35] indicated that the cost data
required transformation to meet the criteria for inclusion in the
RTM estimator; therefore, the natural log of each observation was
taken. Next, the mean of the transformed values (7.61), SD of the
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Fig. 3. Comparison of actual and estimated regression to the mean effects
for high- and low-risk groups for coronary artery disease who were enrolled
in a health plan for 4 continuous years. The high-risk group is comprised of
the top quintile in costs for 2001 and the low-risk group comprises the
remaining population. All costs are adjusted to 2005 values.
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As figure 3 illustrates, the entire population of continuously statistical testing using the analysis of co-variance model
enrolled individuals is accounted for once the RTM effect is (ANCOVA).[32] Others have also suggested the use of ANCOVA
calculated in both high- and low-risk groups. Therefore, to show a to control for RTM;[37] however, without the addition of prospec-
program effect adjusting for RTM, a health management program tive assignment to treatment or control based on a strict cutoff, the
must reduce costs in the high-risk group beyond that estimated by ANCOVA results may still be biased.
the model, while ensuring that costs do not increase in the low-risk As illustrated in figure 1, the effect of RTM is eliminated when
group beyond the model estimates. several repeated measurements are taken. Therefore, one simple

A model to estimate the impact of RTM was described in this way of controlling for RTM in a prospective manner is to use the
section. However, as indicated by the model parameters (in partic- average of two or more pre-test measurements as a way of deter-
ular, the use of the pre-post correlation coefficient), this estimation mining patient assignment to the intervention. An enhancement to
is done retrospectively once all the observations are completed and the model described above can be used, where all parameters are
the associated statistical measures have been calculated. Section 4 identical except the z-score, which is now changed as follows
provides direction in developing strategies prior to program com- (equation 5):[3,21]

mencement in order to reduce or prevent the impact of RTM on z-score = [(κ-µ)]/[(δ2 + γ2)/n]
outcomes.

(Eq. 5)

where κ is the cutoff score, µ is the mean of the multiple observa-
4. Designing Programs to Mitigate the RTM Effect tions (n), δ2 is the variance of true measurement (p * σ2), γ2 is the

variance of repeated individual measurements (σ2 – δ2), and, thus,
The most obvious choice in prospective study designs to con- [(δ2 + γ2)/n] is the pooled variance.

trol for the RTM effect is the randomized, controlled trial (RCT).
Using the CAD cost data, figure 4 illustrates the estimated

Random assignment to treatment or control is meant to eliminate
RTM effect for 2004 using the average of the 2001–3 costs. The

selection bias by distributing all known and unknown sources of
mean = $US8339, SD = $US9654, correlation = 0.24, and the

variation equally between groups. By adding the equivalent con-
cutoff value was set as the first observation of the fifth quintile =

trol group, the effect of RTM will be accounted for in the differ-
$US14 042. As shown, the baseline means of the high- and low-

ence in outcomes between the groups (i.e. both groups may show
risk groups are closer together than in the previous example using

an improvement in the health outcome [as a result of RTM] with
only a 1-year baseline. It should be noted that little benefit is

the differential being the treatment effect). In the health manage-
gained by using more than four baseline measurements to estimate

ment industry, the use of the RCT is usually limited to research
the RTM effect.[21]

endeavors where strict control over the study environment is
An important factor to include in the discussion of RTM is the

possible. However, for the majority of programs, the RCT is
participants’ tenure both in the population from which they were

neither practical nor feasible in a business setting.

The regression-discontinuity design may be the most suitable
study design for health management programs in that it controls
for major sources of bias with few design requirements.[36] Indi-
viduals are assigned to treatment or control based on a cutoff score
of a pre-test variable. Those subjects scoring below the cutoff
(assuming a lower score equates to poorer health) are assigned to
the intervention while those scoring above the cutoff act as con-
trols. The post-test measure may be the same as or different to the
pre-test. In general, the strict adherence to group assignment
allows for the determination of an unbiased treatment effect asso-
ciated with the cutoff value. In other words, individuals closest to
the cutoff on either side are similar enough on the outcome
measure that any difference between them (discontinuity of the
regression line coinciding with the cutoff) would be considered a
treatment effect. This can be inspected visually and supported by
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Fig. 4. Comparison of actual and estimated regression to the mean effects
for high- and low-risk groups for coronary artery disease using the average
of 3 baseline years as the ‘pre’ value and 1 year as the ‘post’ value. The
high-risk group is comprised of the top quintile in costs for 2001–3 and the
low-risk group comprises the remaining population. All costs are adjusted
to 2005 values.
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