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Abstract
When a randomized controlled trial is not feasible, investigators typically turn to matching
techniques as an alternative approach to evaluate the effectiveness of health care interven-
tions. Matching studies are designed to minimize imbalances on measured pre-
intervention characteristics, thereby reducing bias in estimates of treatment effects.
Generally, a matching ratio up to 4:1 (control to treatment) elicits the lowest bias.
However, when matching techniques are used in prospective studies, investigators try to
maximize the number of controls matched to each treated individual to increase the
likelihood that a sufficient sample size will remain after attrition. In this paper, we describe
a systematic approach to managing the trade-off between minimizing bias and maximizing
matched sample size. Our approach includes the following three steps: (1) run the desired
matching algorithm, starting with 1:1 (one control to one treated individual) matching and
iterating until the maximum desired number of potential controls per treated subject is
reached; (2) for each iteration, test for covariate balance; and (3) generate numeric sum-
maries and graphical plots of the balance statistics across all iterations in order to deter-
mine the optimal solution. We demonstrate the implementation of this approach with data
from a medical home pilot programme and with a simulation study of populations of
100 000 in which 1000 individuals receive the intervention. We advocate undertaking this
methodical approach in matching studies to ensure that the optimal matching solution is
identified. Doing so will raise the overall quality of the literature and increase the likeli-
hood of identifying effective interventions.

Introduction
In health care settings, conducting a randomized controlled trial
(RCT) to evaluate the effectiveness of programmes and other inter-
ventions is often infeasible due to logistical, practical or ethical
reasons. When only observational data are available, investigators
use matching techniques to create a control group that is similar to
the treatment group. Matching is performed on observed pre-
intervention characteristics only, and unlike RCTs, must assume
that the unknown characteristics will not bias the results [1].

Generally, a matching ratio of up to 4:1 (controls to treated
subjects) elicits the lowest bias in treatment effect estimates [2–5].
Higher ratios typically increase bias because each additional
matched control will be less comparable to the treated subject than

the first matched control, and fewer controls will be available
overall for matching to treated subjects later in the matching
process. In prospective studies where attrition is likely, there is an
additional consideration; sufficient controls must be matched to
each treated subject at the outset to ensure that at least one control
will remain matched to each treated individual at the study’s
conclusion. If no acceptable control matches are found, unmatched
treated individuals will be dropped from the analysis [6]. Thus, a
challenging issue facing investigators who use a matching strategy
is to balance the trade-off between reducing bias and maximizing
the matched sample size.

The purpose of the current paper is to describe a systematic
approach to choosing the optimal number of controls per case in a
matching study in which the investigator has the ability to choose
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more than one control for every treated subject. First, the investi-
gator specifies the maximum number of controls per treated
subject being considered. Next, for each potential number of con-
trols, from 1 to k, a matching algorithm creates a matched data set
with up to the specified number of controls per case and generates
balance statistics [standardized differences in means, variance
ratios (VRs)] for each variable used for matching. Finally, the
balance statistics are summarized and plotted against the number
of controls per treated individual, allowing the investigator to
visually identify the number of controls that provides the best
trade-off between bias and sample size. While we utilize a pro-
pensity score approach, a strength of this methodology is that it
can be implemented in conjunction with any matching procedure
that offers a k:1 solution (we refer readers to Stuart [7] for a
comprehensive treatment of available matching approaches and
procedures, and Caliendo & Kopeinig [8] for a more tailored
discussion on propensity score matching).

The paper is organized as follows: In the next section, ‘Meas-
ures of Covariate Balance’, we describe the two numeric measures
of covariate balance used in our approach. We also explain how
these measures, which are commonly used to assess covariate
balance in 1:1 matching, are modified for k:1 matching. In the
subsequent section, ‘Example 1: A Medical Home Pilot Pro-
gramme’, we demonstrate our approach using data from a
primary-care based medical home pilot programme. In the follow-
ing section titled ‘Example 2: A Monte Carlo Simulation Study’,
we demonstrate the approach on simulated populations of 100 000
people of whom 1000 are exposed to a hypothetical prospective
intervention. In the ‘Discussion’, we summarize our findings and
offer recommendations for researchers employing these tech-
niques. We close with a set of concluding remarks.

Measures of covariate balance
In order to ensure valid results, an intervention study, whether
randomized or observational, must have treatment and control
groups that are comparable on pre-intervention characteristics.
While the nature of randomization should produce balance on both
observed and unobserved covariates, in observational studies, we
cannot make this assumption and therefore assess covariate
balance on observed characteristics alone.

Generally, covariate balance is assessed by both graphical and
numerical diagnostics [7,9]. Graphic displays such as box plots
and density probability plots [10,11] provide a visual snapshot of
balance across the distribution of a covariate. Although these plots
are useful, their interpretation is subjective and they generally do
not provide quantifiable summaries that can be used for analytic
comparisons. Numerical measures, on the other hand, allow for
objective criteria to be used to determine covariate balance and to
generate comparisons across different matching solutions. There-
fore, in the current study, we rely on numerical balance measures,
and we focus on two commonly used measures: the standardized
difference between treatment and control means, and the ratio of
treatment and control variances (‘the variance ratio’).

Standardized mean difference (SMD)

With no matching or 1:1 matching, the SMD for a given covariate
j is defined as [12]:
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where the numerator is the absolute difference in means between
the treatment and control groups (denoted as T and C, respec-
tively) and the denominator is a 50:50 pooled standard deviation.
Dichotomous covariates can also be tested for balance using this
equation or using a formula specific to proportions [9]. This
measure is dimensionless and is not sensitive to sample size.
While there is no empirical evidence to support the use of any
particular cut-off point to define imbalance, Normand et al. [13]
suggest that a standardized difference greater than 0.10 is indica-
tive of imbalance and Rubin [14] suggests a cut-off of 0.25.
Alternatively, since the standardized difference is a version of
Cohen’s d statistic for effect size [15], one could also argue for
a cut-off of 0.20, which Cohen termed a ‘small’ effect. Thus, the
investigator has a rather broad range of acceptable cut-offs to
choose from.

When multiple covariates are tested for balance, an overall
summary statistic of the individual SMDs is helpful. This can
take many forms, such as the average, the median or the per-
centage of covariates with standardized differences less than a
designated limit. We use the average SMD, defined for J vari-
ables as follows:
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which is the sum of the individual absolute standardized differ-
ences divided by the number of covariates assessed. When com-
paring different matching solutions, higher values of SMD
indicate greater imbalance across covariates.

VRs

As balance is not only a property of the sample means of a
covariate but of the overall distribution, higher-order sample
moments of the distribution should be evaluated as well. Rubin
[14] proposes the use of the ratio of treated and control variances
as a balance measure. In the case of 1:1 matching for continuous
variables, the VR for a given covariate j is as follows:
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where the numerator is the variance of the covariate in the treated
group and the denominator is the variance of the covariate in the
control group. Better balance is defined by values close to 1.0.
Rubin [14] suggests that variables are out of balance if the VR is
greater than 2.0 or less than 0.5. As this ‘two-sided’ definition of
imbalance leads to difficulties when a summary VR must be
created, we consider a modified version. Recall that the SMD is
always positive, regardless of which group’s mean value is larger.
We define an analogous variance ratio, VR*, which is always
greater than 1, regardless of which group’s variance is larger, with
a value greater than 2.0 indicating imbalance:
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where the maximum of the treated and untreated squared stand-
ard deviations is in the numerator and the minimum is in the
denominator.

To summarize the VRs of multiple covariates, we take the geo-
metric mean of the VR* values and refer to it as the Geometric
Mean Variance Ratio (GMVR):
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As with the individual VR* values, the GMVR is always greater
than 1 and, as before, values greater than 2.0 reflect imbalance.

Numeric diagnostics under a k:1
matching strategy

For k:1 matching, one can consider either (1) fixed ratio matching,
in which exactly k controls are matched to each treated subject, or
(2) variable ratio matching, in which up to k controls are matched
to each treated subject with the potential for treated subjects to be
assigned a varying number of controls. For example, with 3:1
variable ratio matching, one subject may only have one matched
control while another subject may have three controls. Variable
ratio matching has been shown to have better bias reduction prop-
erties than fixed ratio matching [16], and so we follow a variable
ratio matching approach in the current study.

When variable ratio matching is employed, weights must be
incorporated into the analysis to avoid bias in estimated treatment
effects [17]. When one control is matched to one treated subject,
the mean covariate value for that control is the covariate value
itself. However, when two controls are matched to one treated
subject, the mean covariate value is an average of the two controls’
values. For most matching studies, the goal is to estimate the
average treatment effect in the treated (ATT), and the weight of the
treated subject must equal the sum of the weights for its matched

controls. While any weighting system meeting this criterion will
do, we give each treated subject a weight of 1, and each of its
controls a weight of 1/k [17]. For example, if three controls are
matched to one treated subject, each control gets a weight of 1/3.
When utilizing variable ratio matching, weighted means and
standard deviations replace their unweighted counterparts in the
formulas for SMDs and VRs (equations 1–5).

Example 1: A medical home
pilot programme

Data

We use data from a primary care-based medical home pilot pro-
gramme that invited patients to enrol if they had a chronic illness
or were predicted to have high costs in the following year. The
goal of the programme was to lower health care costs for pro-
gramme participants by providing intensified primary care (see
Linden [18], for a more comprehensive description). The retro-
spectively collected data consist of observations for 374 pro-
gramme participants and 1628 non-participants. Table 1 describes
the pre-intervention characteristics of the treated and non-treated
groups, together with their unadjusted standardized differences
and VRs. As shown, the treated group differed markedly from the
non-treated group on every variable. On average, treated individ-
uals were older, were less likely to be female, and had higher
utilization and costs than non-treated individuals. All standardized
differences at the individual variable level were greater than 0.10
and all of the VRs were greater than 2.0. Both the summary
average SMD and geometric mean VR exceeded those cut-points
as well (SMD = 0.653, GMVR = 2.897). These significant imbal-
ances highlight the need for an effective matching strategy to
create a control group that more closely resembles the treatment
group.

Table 1 Baseline (12 months) characteristics of programme participants (treated) and non-participants (non-treated) (from [18])

Variable*
Treated
(n = 374)

Non-treated
(n = 1628)

Standardized
difference†

Variance
ratio‡

Demographic characteristics
Age 54.87 (6.71) 43.44 (11.99) 1.177 3.192
Female (%) 56.4 49.6 0.137

Utilization and cost
Primary care visits 11.29 (7.30) 4.63 (4.35) 1.111 2.820
Other outpatient visits 18.03 (16.65) 7.25 (10.61) 0.772 2.463
Laboratory tests 6.09 (5.27) 2.38 (3.31) 0.844 2.542
Radiology tests 3.20 (4.46) 1.31 (2.48) 0.524 3.225
Prescriptions filled 40.59 (29.96) 11.95 (17.14) 1.174 3.055
Hospitalizations 0.24 (0.52) 0.07 (0.29) 0.403 3.239
Emergency department visits 0.39 (1.03) 0.16 (0.50) 0.287 4.232
Home-health visits 0.09 (0.88) 0.01 (0.38) 0.108 5.462
Total costs 8237 (9830) 3047 (5817) 0.643 2.856

Average§ 0.653 2.897

Notes:
*Unless otherwise noted, variables presented are means and standard deviations.
†Standardized differences were calculated using Equation 1 for all variables.
‡Variance ratios are calculated using Equation 4 for continuous variable only.
§The averages are derived using Equations 2 and 5, respectively.
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Methods

Although an array of matching strategies could have been
employed, we selected propensity score matching, due to its wide-
spread use in the medical literature [19–21]. The propensity score
reflects the probability of assignment to the treatment group con-
ditional on observed covariates [22]. It reduces bias by controlling
for pre-intervention differences between treated and non-treated
groups. Propensity scores are generally derived from a logistic
regression equation that reduces each participant’s set of
covariates to a single score. Conditional on a well-constructed
propensity score, pre-treatment covariates will be independent of
group assignment and will be distributed similarly in both groups.
When correlation of covariates and treatment assignment is
removed, the covariates will not confound estimated treatment
effects [22].

In our example, the propensity score was estimated from a logit
model in which the treatment variable was regressed on the 11
baseline covariates listed in Table 1, entered as main effects. Then,
to select the controls on which to calculate the imbalance measures
described above, we performed variable ratio k:1 matching with
a modified version of FGMATCH, a user-written Stata command
for greedy matching [23], which in turn, is an enhanced version
of a similar programme written for SAS by Parsons [24]. In
FGMATCH, one specifies the number k for variable ratio k:1
matching. Before the process begins, controls are randomly
ordered. Matching is performed without replacement, so that con-
trols are matched to at most one case. The criterion for matching a
treated subject to a given control is the number of decimal digits to
which their propensity scores agree. In our application, an attempt
was first made to match on five decimal digits; if fewer than k
controls were matched to a case, matching on four decimal digits
was attempted, continuing to a match on a single digit.

To compute the imbalance measures, we modified PBALCHK
[25], another Stata command contributed by the author of
FGMATCH, to estimate the unweighted and weighted SMD and
VR statistics as described earlier. We report results for k ranging

from one to four and also show the number of treated and controls
that were matched for each value of k. All analyses were conducted
using Stata 12.1 (StataCorp., College Station, TX, USA).

Results

Table 2 presents sample sizes and weighted covariate means for
treated and matched controls. Note that as the maximum number
of controls per case increases, the treated and untreated means
remain relatively unchanged, but the total number of matched
treated subjects decreases.

Table 3 presents the absolute standardized differences in
weighted covariate means for each of the variable ratio matching
solutions ranging from one up to four controls per treated individ-
ual (unmatched values for standardized differences and VRs are
taken from Table 1 and presented in Tables 3 and 4 for conveni-
ence). The average standardized difference remains below 0.10 for
all matching scenarios, indicating that, on average, all solutions
provide good covariate balance. However, the number of individ-
ual covariates with SMD values greater than 0.10 increases from
one (for the 1:1 solution) up to four (for the 3:1 and 4:1 solutions).
No covariates would be considered imbalanced if the threshold
was set at either 0.20 [15] or 0.25 [14].

Table 4 presents the weighted VRs for each of the matching
solutions ranging from one up to four controls per treated individ-
ual. As shown, the geometric mean VR is within the range of 1.0
and 2.0 for all matching scenarios, indicating once again that on
average, all solutions provide good covariate balance. At the indi-
vidual covariate level, however, laboratory testing rates and home-
health visit rates persistently fall outside of this range, while
radiology testing falls outside of the range at 4:1 matching. These
results are explained by consistently higher variances in the
control group for these variables which, in turn, is driven by the
much larger ranges of values in these variables among controls
compared to those in the treated group.

Figure 1 provides a graphical display of the average standard-
ized difference and GMVR for each k:1 solution. While this figure

Table 2 Weighted sample means* by k:1 matching solutions (up to four controls per treated subject)

Variable

Maximum number of controls per treated

1 2 3 4

Treated Control Treated Control Treated Control Treated Control

n 271 271 225 403 206 496 196 553
Age 53.92 54.75 53.38 54.52 53.10 54.39 52.96 54.35
Female (%) 55.72 55.72 53.33 52.67 54.37 53.00 56.12 53.44
Primary care visits 9.73 9.43 9.32 8.83 9.34 8.66 9.48 8.65
Other outpatient visits 15.26 14.58 14.84 13.82 14.91 13.62 14.96 13.71
Laboratory tests 5.10 4.90 4.64 4.51 4.68 4.47 4.76 4.51
Radiology tests 2.99 2.75 3.00 2.46 3.10 2.41 3.17 2.39
Prescriptions filled 32.94 32.24 31.27 30.02 30.87 29.67 30.84 30.19
Hospitalizations 0.17 0.16 0.16 0.13 0.16 0.13 0.16 0.14
Emergency department visits 0.34 0.33 0.32 0.31 0.35 0.29 0.36 0.28
Home-health visits 0.03 0.09 0.02 0.06 0.02 0.06 0.03 0.05
Total costs 6613 6364 6336 5685 6325 5903 6468 5892

Notes: *Except for n which is reported as a count, and female, which is reported as a percentage.
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provides the same information as presented in Tables 3 and 4, the
graphic form allows the investigator to examine multiple aspects
of the data simultaneously.

Example 2: A Monte Carlo
simulation study
In this section, we use Monte Carlo simulation to demonstrate
the performance of our iterative approach in identifying the
optimal number of controls per treated individual, when the pool
of eligible controls is extremely large relative to the number of
treated individuals. This is a common scenario for many interven-
tions implemented in health plans, such as disease management
or case management programmes. These populations typically
experience a high turnover rate, requiring programme evaluators to
maximize the number of controls matched to each treated individ-
ual at the outset, in an effort to maintain sufficient sample size at

the end of the study. With simulated data, we have the additional
ability to generate an ‘actual’ treatment effect and then test which
matching approach provides the most accurate solution (i.e.
derives the closest treatment effect to the actual).

Design

We began by generating a pseudo-population of 100 000 individ-
uals comprised of 1000 treated and 99 000 untreated individuals.
Following the data generating process described by Austin [26],
we created five continuous and five dichotomous covariates. For
the continuous covariates, untreated individuals received randomly
generated values from a normal distribution with mean of 0 and
standard deviation of 1. Treated individuals received randomly
generated values from a normal distribution with means of 0.20,
0.30, 0.40, 0.50 and 0.60, and a standard deviation of 1, for each of
the five continuous covariates respectively. For the dichotomous

Table 3 Standardized differences* for
unmatched and k:1 matching solutions (up
to four controls per treated subject)Variable

Maximum number of controls per treated

Unmatched 1 2 3 4

Age 1.177 0.082 0.113 0.134 0.137
Female 0.137 0.030 0.004 0.015 0.061
Primary care visits 1.111 0.072 0.099 0.128 0.135
Other outpatient visits 0.772 0.040 0.101 0.118 0.096
Laboratory tests 0.844 0.080 0.023 0.048 0.060
Radiology tests 0.524 0.066 0.127 0.174 0.183
Prescriptions filled 1.174 0.003 0.057 0.062 0.043
Hospitalizations 0.403 0.049 0.054 0.065 0.065
Emergency department visits 0.287 0.029 0.031 0.083 0.094
Home-health visits 0.108 0.145 0.112 0.085 0.069
Total costs 0.643 0.033 0.083 0.090 0.075
Average standardized difference† 0.653 0.057 0.073 0.091 0.093

Notes:
*Standardized differences were calculated using Equation 1 with and without weights for the
unmatched sample and for all k:1 solutions, accordingly.
†Average standardized difference was derived using Equation 2.

Table 4 Variance ratios* for unmatched and
k:1 matching solutions (up to four controls
per treated subject). Values presented are
for continuous variables only

Variable

Maximum number of controls per treated

Unmatched 1 2 3 4

Age 3.192 1.186 1.175 1.274 1.290
Primary care visits 2.820 1.143 1.062 1.010 1.023
Other outpatient visits 2.463 1.332 1.272 1.204 1.185
Laboratory tests 2.542 1.936 2.306 2.259 2.247
Radiology tests 3.225 1.150 1.586 1.872 2.043
Prescriptions filled 3.055 1.373 1.386 1.414 1.412
Hospitalizations 3.239 1.050 1.006 1.044 1.085
Emergency department visits 4.232 1.580 1.703 1.906 1.939
Home-health visits 5.462 5.648 4.937 3.609 2.945
Total costs 2.856 1.251 1.042 1.017 1.188
Geometric mean variance ratio† 3.309 1.462 1.473 1.467 1.481

Notes:
*Variance ratios were calculated using Equation 4 with and without weights for the unmatched
sample and for all k:1 solutions, accordingly.
†Geometric mean variance ratio was derived using Equation 4.
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covariates, untreated individuals received uniformly distributed
random variates to simulate prevalence rates of 0.10 through 0.50
for the five dichotomous covariates, respectively. Treated individ-
uals received uniformly distributed random variates to simulate
prevalence rates of 0.168, 0.331, 0.492, 0.642 and 0.776 for the
five dichotomous covariates, respectively. This setup produced
standardized differences of 0.20, 0.30, 0.40, 0.50 and 0.60 between
treated and the unmatched pool of untreated individuals for both
the continuous and dichotomous covariates, respectively. Next, we
randomly generated a continuous outcome for each individual:

Y C C C C C B B
B B

i i i i i i i i

i i

= − + + + + + + +
+ + +

2 8 1 5 2 3 4 5 5 4
3 2 1 5

1 2 3 4 5 1 2

3 4

. .
. BB T5i i i+ + ε

where Yi is a function of the treatment variable T (with a treatment
effect of 1.0), the five continuous covariates (C1-C5), the five
binary covariates (B1-B5), and a normally distributed error term ε
with mean 0 and standard deviation 2 [26].

For each individual in the pseudo-population, the propensity
score was estimated from a logit model in which the treatment
variable was regressed on the 10 covariates, entered as main
effects. Following the procedure described in Example 1, we per-
formed iterative k:1 matching up a maximum of 70 matched con-
trols for each treated individual. Because of the large number of
controls, we required matching on the propensity scores to the
nearest two decimal digits, not one as in the first example. At each
iteration, we calculated the standardized difference for each of the
10 covariates using Equation 1 and the average SMD, using Equa-
tion 2. The treatment effect was estimated by regressing the
outcome on the treatment variable using the weight generated to
account for k:1 matching as described earlier. This simulation was
then repeated 100 times and the results were averaged across all
the simulated data sets.

Results

The online Supporting Information presents tables with the simu-
lation results averaged for each of the 70 matched scenarios.
Supporting Information Table S1 presents the sample sizes, stand-
ardized differences for each of the 10 covariates, the actual

number of imbalanced covariates (i.e. standardized difference
>0.10) and the average standardized difference across all 10
covariates. We omit VRs from this analysis because, with excep-
tion of one or two scenarios, all were very close to 1.0. By design,
all covariates in the unmatched population were imbalanced, pro-
ducing an average SMD of approximately 0.40. Not until a match-
ing ratio of up to 61 controls to each treated subject did the
average SMD again cross over the 0.10 threshold. The actual
number of covariates out of balance remained at zero until a
matching ratio of up to 47 controls to a treated subject, and then
rose to a maximum of six for the matching ratio of up to 70
controls per treated subject. The number of treated individuals
dropped due to lack of good matches was relatively small overall,
reaching a maximum of 48 in the highest matching ratio solution.

Supporting Information Table S2 presents the estimated treat-
ment effect, absolute bias, mean squared error (MSE) and root
mean squared error (RMSE) for each of the 70 matching ratios. As
shown, overall matching ratios between one and four controls per
treated subject elicited the lowest bias in treatment effect esti-
mates, with the 1:1 ratio having the lowest absolute bias (e.g. the
mean estimated treatment effect of 1.007 minus the true treatment
effect of 1.0 minus = 0.007, or 0.7%), and the 2:1 ratio producing
the lowest MSE and RMSE. Beyond the 4:1 matching ratio, these
measures of bias increase substantially. There is also no gain in
study precision when matching more than four controls to each
treated individual, as standard errors for the estimated treatment
effect barely change for k > 4.

Discussion
Matching is often favoured over other adjustment techniques,
such as regression analysis, because it decouples the design from
the analysis of treatment effects [14]. A matching strategy,
however, requires that the investigator balance baseline covariates
to reduce biased treatment effect estimates, and in a longitudinal
study, to ensure sufficient matched-sets are available for the final
analysis. Although the most common propensity-score matching
technique found in the medical literature is 1:1 matching [19,20],
rarely do authors describe an assessment of whether this matching
solution is optimal. It is therefore likely that 1:1 matching is
selected a priori as the method of choice, which misses the poten-
tial to improve the evaluation. In this paper, we develop an
approach that can be used by investigators to identify the optimal
number of controls. Our approach relies on standardized differ-
ences and VRs as numeric measures of covariate balance.
However, our approach can be adapted to any numeric balance
diagnostic that accommodates weights, such as the standardized
difference in variances [27] or the multivariate imbalance measure
based on the L1 distance [28].

In our medical home pilot programme example, the two balance
measures suggested that overall covariate balance is achieved in
variable ratio matching of up to four controls per treated individ-
ual; however, some individual covariates remain imbalanced.
Investigators may find it important to consider which covariates
are imbalanced for a given matching strategy. For example,
Table 3 indicates that age and radiology test rates are imbalanced
(standardized differences > 0.10) at all matching levels greater
than 1:1, while home health visit rates are imbalanced in the 1:1
and 2:1 solutions. Table 4 shows that laboratory test rates and
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Figure 1 Average standardized difference and geometric mean vari-
ance ratio for each k:1 solution (up to four controls per treated subject).
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home health visit rates have imbalanced VRs. Both theoretical and
applied expertise is necessary to determine which imbalances are
acceptable and which are not. Here, one could argue that the most
important covariates requiring balance are emergency department
visits, hospitalizations and costs, as these are the outcomes
expected to be directly impacted by the intervention [29]. Visual
displays of the balance statistics for these individual covariates can
assist the investigator in quickly examining multiple aspects of the
variables simultaneously. As illustrated in Fig. 2, the standardized
differences for emergency department visits, hospitalizations and
costs are within the acceptable limit of 0.10 across all matching
solutions. Rather than discarding imbalanced covariates, residual
imbalances can be further adjusted within a regression framework
during the analysis stage [30]. For large imbalances, however,
regression adjustment would consist of an extrapolation between
treated and controls whose distributions on the covariate do not
overlap. If these imbalances occur on essential covariates, the
investigator may conclude that these data do not permit credible
estimation of the intervention effect.

Another important factor to consider when choosing a matching
solution is the number of treated observations that are lost as k
increases and the pool of controls is diminished. Investigators may
feel that generalizability is compromised with a sizeable loss of
treated units. In practice, the choice of k will be based on the
particular characteristics of the study. Specifically, in a retrospec-
tive study where all the available data have been collected, the
investigator should choose the matching solution that retains the
largest number of treated individuals (which will most likely be
the 1:1 solution). In the context of the medical home pilot data,
about 28% (103 of 374) of treated subjects could not be matched
to even one control, and attempts to match to more than one
control resulted further losses of treated subjects for whom
matches could not be found (Table 2). When retaining the
maximum number of treated individuals is critical, a possible
solution to consider is implementing a matching ‘with replace-
ment’ strategy. This procedure involves replacing a matched

control back into the dataset so that it may be matched to addi-
tional treated individuals. One possible drawback is that in some
situations, certain controls may be used an inordinate number of
times, thereby exerting excessive influence on the treatment effect
estimate. Thus, when using matching with replacement, the
number of times each control is matched should be monitored [7].

Our second example simulates a prospective study in which
high rates of attrition are anticipated over time. In this simulation,
we see that no covariates are imbalanced up to a ratio of 47
controls per treated subject, and the average SMD does not surpass
the 0.10 threshold until a ratio of 61 controls per treated subject is
reached. These results underscore the danger of blind dependence
on ‘standard’ guidelines for defining balance. Although all
covariates remain ‘balanced’ up to k = 47 according to the 0.10
criterion, the absolute bias in the treatment effect and RMSE is
approximately 386% at that matching solution (Supporting Infor-
mation Table S2). In fact, our simulation study confirmed findings
from other research suggesting that matching ratios of up to 4:1
elicit the lowest bias in treatment effect estimates [2–5]. The
absolute bias in the estimated treatment effect nearly doubles from
8.5% to 16.2% when moving from a 4:1 to 5:1 matching solution,
and is over 100% when k > 16 (Supporting Information Table S2).

Taken together, these simulation results highlight an important
caveat: even well-matched groups, as judged by having SMD less
than 0.10, can result in unacceptably large bias in estimated treat-
ment effects. Therefore, in the scenario of a large population with
relatively few treated subjects, the investigator should consider (1)
imposing much stricter imbalance criteria (e.g. standardized dif-
ferences <0.05) and (2) finding the optimal k:1 solution that is not
too large (because of increased bias), but also not too small
(because attrition may leave some treated individuals with no
matched controls). This second point can be informed statistically.
As an example, assume that the number of matched controls lost
for each treated subject follows a binomial distribution with
common probability of 50% (i.e. 50% attrition). If we choose to
match four controls to each treated individual, then the expected
proportion of treated individuals left with no remaining controls
will be (0.50)4 = 0.0625. In other words, approximately 94% of the
remaining treated individuals will be expected to have at least one
matched control.

Conclusion
In this paper, we have described a systematic approach to identify-
ing the optimal number of controls in matching studies; one that
balances the trade-off between bias and matched sample size. This
involves generating tables and graphs of summary statistics and
numeric balance measures for as many k:1 matching solutions as
the data allow, and then determining the matching solution with the
largest number of matched sets that will maintains overall covariate
balance. Throughout this process, investigators should consider not
only global measures of imbalance but measures for individual
predictors. Our simulations, echoing the findings of others, show
that matching more than four controls per treated subject can lead to
increasingly biased treatment effects. However in longitudinal
studies, even if an investigator is satisfied with a 1:1 matching ratio,
a somewhat larger ratio will protect against attrition of controls.
Implementation of such an approach will increase the likelihood of
accurately identifying effective interventions.
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Figure 2 Standardized difference for individual covariates (emergency
department visits, admissions and total costs) at each k:1 solution (up to
four controls per treated subject). Horizontal line at 0.10 represents an
upper limit of balance for the standardized difference.
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