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Employed to model an ordered dependent (class) variable, Pearson correla-

tion
1
 (r) is used in univariable applications featuring one ordered independ-

ent variable (attribute), and multiple regression analysis (MRA) is utilized 

in multivariable applications featuring two or more attributes. Prior research 

demonstrated how to maximize the predictive accuracy of univariable
2,3

 and 

multivariable
3-6

 regression models vis-à-vis an ODA-based procedure. The 

present paper instead demonstrates optimal alternatives to r and MRA. 

 

 

 

A variation of the partitioning algorithm (PA) 

used herein is employed in the analysis of both 

interrupted and continuous time-series.
7-10

 In a 

time-ordered series PA involves creating a set 

of dummy codes indicating if each observation 

(i.e., each data point in the series) was recorded 

at or prior to (0), or after (1), every sequential 

step in the time-series.
7
 Similarly, in a value-

ordered series PA involves creating a set of 

dummy codes indicating if each observation 

(i.e., each data point in the sample) had a score 

equal to or less than (0), or greater than (1), each 

sequential value in the class variable measure-

ment scale. In either situation each dummy class 

variable is analyzed with the attribute in a sepa-

rate novometric analysis, and the model with the 

largest ESS statistic (if competing models have 

an identical number of strata), or the smallest D 

statistic (a normed index of distance separating 

ideal versus empirical model in the application),  

 

 

 

is selected as the globally optimal (GO) model 

of the relationship between the class variable 

and the attribute for the sample.
2,11

  

Pearson r versus Novometric Analysis 

Exposition begins with two examples of 

the maximum-accuracy alternative to r. 

Age and Patient Comorbidity 

 Data for this example come from an 

evaluation of a disease management program 

designed for patients with congestive heart 

failure and implemented in a large health plan 

located in the Western United States.
12

 The 

primary goal of the intervention was to reduce 

avoidable hospitalizations.
13

 Two variables from 

that study are used in the current example; age 

and the Charlson Comorbidity Index score 

(CCI).
14 

Descriptive statistics for age (14-103) 
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and CCI (0-17), both measured on integer 

scales, are presented in Table 1. 

Table 1: Descriptive Summary: Age and CCI 

Variable N Mean   SD CV (%) 

Age 7,971 64.05 15.64 24.41 

CCI Index 7,971 2.79 2.56 91.74 

 Correlation Analysis: The Pearson corre-

lation between age and CCI score is r = 0.354, p 

< 0.0001. The coefficient of determination, R
2
 = 

0.125, indicates that 12.5% of the variation in 

CCI score is explained in terms of this positive 

linear function. Linear models with an R
2
 of this 

magnitude only accurately predict values of the 

dependent (class) variable that lie at or near to 

the sample mean. Such models return an ESS 

statistic close to zero—the level of accuracy 

expected by chance. The ESS for this r model is 

1.43, indicating an extremely weak effect.
2,3

 

Novometric Analysis: The first axiom of 

novometric theory requires a sample sufficiently 

large to provide minimally adequate statistical 

power to test the a priori hypothesis.
2
 Presently, 

statistical power analysis indicated a minimum 

of 32 patients in all model endpoints (i.e., model 

strata) yields 90% power to detect generalized 

(per-comparison) non-directional p<0.05 for a 

moderate effect.
2
 Models meeting the minimum 

strata sample size criterion were obtained for 

dummy-coded CCI scores between 0 and 12 

(the minimum and maximum scores used in PA, 

respectively): thus a total of 13 CCI dummy 

class variables were constructed and analyzed. 

Summarized in Table 2, every optimal model 

that emerged had two strata, each representing 

more than 32 patients. If ESS declined in cross-

generalizability analysis then the LOO estimate 

is given. All tabled ESS values have p<0.0001. 

The model with a CCI cut-point of 2 had 

greatest accuracy (76.39%) in predicting low 

(<2) CCI scores, and the model with a cut-point 

of 12 had greatest accuracy (86.49%) in predict-

ing high (>12) CCI scores. In LOO analysis the 

sensitivity of the latter model was stable for CCI 

scores <12, but fell to 78.38% for higher scores. 

Table 2: Optimal Models for 13 CCI-Score- 

Based Dummy Class Variables 

Cut-Points        Sensitivity                    ESS 

CCI Age Class 0 Class 1 Training LOO 

  0 59.5 56.40 63.36 19.76  

  1 64.5 74.59 54.99 29.57  

  2 67.5 76.39 57.06 33.44  

  3 67.5 73.08 64.05 37.14  

  4 64.5 64.34 74.61 38.95  

  5 64.5 61.99 76.66 38.65  

  6 64.5 60.00 77.03 37.03  

  7 64.5 58.81 76.89 35.70 26.77 

  8 68.4 65.22 65.85 31.07  

  9 64.5 57.24 74.19 31.43  

10 64.5 57.01 77.59 34.59  

11 64.5 56.82 81.82 38.64 28.04 

12 64.5 56.71 86.49 43.19 35.08 

The greatest ESS identified in training 

analysis, 43.19, emerged for a CCI cutpoint of 

12, but ESS declined to 35.08 in LOO analysis. 

The greatest ESS in LOO analysis, 38.95 

(an effect of moderate strength
2,8

), emerged for 

a CCI cut-point of 4. This model was selected 

on the basis of the fourth axiom of novometric 

theory as being the globally-optimal model in 

this example.
2
 The model was: if age<64.5 years 

then predict CCI score<4; otherwise predict CCI 

score>4. The confusion matrix for this model in 

LOO analysis is given in Table 3. 

Table 3: Confusion Matrix for Predicted CCI 

Score: Age Cut-Point <64.5 Years 

 Predicted CCI 

                                        <4          >4 

             Actual      <4   4,097      2,271   64.34% 

               CCI        >4      407      1,196   74.61% 

As seen, two of three patients 64.5 years 

of age or younger had a CCI score of four or 
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less, and three of four patients 64.5 years of age 

and older had a CCI score of five or greater. 

Age and Number of Office Visits 

 Data for this example come from an 

evaluation of a health management program that 

invited individuals with chronic conditions to 

enroll in a nursing intervention intended to 

improve clinical indices of care while reducing 

medical costs.
15

 Two variables from that study 

are used in the current example; age and the 

number of physician office visits over the study 

period. Age was reported as number of years, 

scientifically rounded to two decimals (19.90-

87.30). Number of office visits was measured 

on an integer scale (0-66). Descriptive statistics 

for these variables are given in Table 4. 

Table 4: Descriptive Summary of Variables 

Variable N Mean   SD CV (%) 

Age 7,868 46.79 11.07   23.67 

Office Visits 7,868 3.93 4.52 115.01 

 Correlation Analysis: The Pearson corre-

lation between age and number of office visits is 

r = 0.156, p < 0.0001. The R
2
 statistic indicates 

that 2.4% of the variation in number of office 

visits is explained as a positive linear function 

of age. The ESS for this r model is ESS=0.13, 

reflecting a miniscule effect. 

Novometric Analysis: Models meeting 

the minimum strata sample size criterion were 

obtained for dummy-coded number-of-visits 

scores between 0 and 22 (minimum and maxi-

mum scores used in PA, respectively): a total of 

23 number-of-visits dummy class variables were 

thus analyzed. Each optimal model summarized 

in Table 5 had two strata each representing more 

than 32 patients. If model ESS declined in LOO 

analysis, then ESS in LOO analysis is given: all 

of the tabled ESS values have p<0.0001 except 

for cut-point 12, for which p<0.039 for ESS in 

LOO analysis. Dashes indicate no statistically 

reliable model was identified. 

Table 5: Optimal Models for 23 Number-of- 

Visits-Based Dummy Class Variables 

 Cut-Points         Sensitivity                   ESS 

Visits Age   Class 0 Class 1   Training LOO 

  0 44.6 46.26 60.32   6.58  

  1 46.2 54.48 55.51 10.00  

  2 - - - - - 

  3 49.2 64.77 48.65 13.43  

  4 49.2 63.72 49.91 13.62  

  5 49.0 61.60 51.58 13.19  

  6 46.8 53.02 59.93 12.95  

  7 - - - - - 

  8 46.6 51.42 62.84 14.26 13.77 

  9 46.8 51.63 64.55 16.18 15.81 

10 52.1 70.37 45.92 16.28 14.98 

11 58.2 85.74 30.77 16.51 14.38 

12 51.6 68.23 48.91 17.14   7.36 

13 51.6 68.53 50.34 18.87 17.19 

14 51.2 66.76 52.12 18.88 17.18 

15 51.6 67.90 52.43 20.34 19.80 

16 46.6 49.98 72.41 22.39  

17 - - - - - 

18 52.2 69.65 57.29 26.94 24.86 

19 - - - - - 

20 52.2 69.52 57.89 27.41 25.66 

21 - - - - - 

22 62.2 92.34 36.11 28.45 25.67 

In training analysis the model using a 

cut-point of 22 had greatest accuracy (92.34%) 

in predicting the absence of a very high (>22) 

number of visits: in LOO analysis the sensitivity 

of this model declined to 33.33% for >22 visits. 

The model using a cut-point of 16 had greatest 

accuracy (72.41%) in predicting the presence of 

a high (>16) number of visits. 

Greatest training ESS, 28.45 (a moderate 

effect), emerged for the number-of-visits cut-

point of 22: while ESS fell to 25.67 (a moderate 

effect) in LOO analysis, it nevertheless was the 

greatest ESS identified in LOO analysis. This 

model was thus chosen as the globally-optimal 

model. The model was: if age<62.2 years then 

predict number of visits< 22; otherwise predict 

visits>22. Table 6 gives the confusion matrix 

for this model in LOO analysis. 
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Table 6: Confusion Matrix for Number of 

Office Visits: Age Cut-Point <62.2 Years 

Predicted Visits 

                                       <22        >22 

             Actual    <22   7,232        600   92.34% 

              Visits    >22        24          12   33.33% 

As seen, nine of ten patients 62.2 years 

of age or younger had 22 or fewer office visits, 

and one of three patients older than 62.2 years 

had more than 22 office visits. 

MRA versus Novometric Analysis 

Exposition now turns to an example of 

the maximum-accuracy alternative to MRA. 

Patient Age and Resource Utilization 

 Data for this example come from the 

evaluation of a primary care-based medical 

home pilot program that invited patients to 

enroll if they had a chronic illness or were 

predicted to have high costs in the following 

year. The goal of the pilot was to lower health 

care costs for program participants by providing 

intensified primary care that was intended to 

reduce unnecessary emergency department 

visits and hospitalizations.
16,17

 Ordered variables 

were measured on integer scales. Descriptive 

statistics for ordered and categorical variables 

are given in Table 7 (OP = other procedures). 

MRA Analysis: Age was treated as the 

dependent measure and modeled as a simple 

main-effects function of all 12 (i.e., 10 ordered, 

2 categorical-binary) independent variables.
18

 

The MRA model (coefficients are reported to 

two significant digits to the right of the decimal, 

when that is possible) was: age = 42.55 + 7.83 * 

treatment condition dummy variable – 1.82 * 

female gender dummy variable - 3.29 * admits 

+ 0.51 * hospitalization days - 1.40 * ER visits 

+ 0.11 * office visits – 0.06 * other procedures 

+ 0.15 * laboratory tests + 0.27 * radiology 

visits – 0.15 * home visits + 0.11 * prescriptions 

– 0.00000064 * cost. 

Table 7: Descriptive Summary of Variables 

Ordered Class Variable (Age) and Attributes 

Variable Mean SD CV (%) Median 

Age 45.58 12.04     26.43      48 

Admits 0.51 0.50     98.34        1 

Days 0.30 1.50    503.13        0 

ER 0.20 0.64    316.15        0 

Office 5.87 5.66      96.41        4 

OP 9.26 12.68    136.95        4 

Lab 3.08 4.02    130.86        2 

Radiology 1.66 3.04    183.03        1 

Home 0.03 0.51 1,796.28        0 

Rx 17.30 23.04    133.21        9 

Cost 4,016 7,044    175.38 2,146 

Categorical Attributes 

Variable No (0) Yes (1) 

Treatment 1,628    374 

Female    984 1,018 

This MRA model explained 19.30% of 

the variation in patient age: F(12,1989) = 39.6, 

p<0.0001. These findings indicate that a statisti-

cally significant, ecologically modest linear 

relationship exists between age and one or more 

members of the set of 12 independent variables. 

The ANOVA source table for individual 

variables in the MRA model (sum of squares for 

variable-entered-last method
18

) revealed statisti-

cally significant positive associations (with age) 

of assignment to treatment condition and num-

ber of prescriptions (p’s<0.0001), and statisti-

cally significant negative associations (with age) 

of female gender (p<0.0003), and number of 

hospital admissions (p<0.0021) and ER visits 

(p<0.0149). 

Finally, considered from the perspective 

of predictive accuracy, for this MRA model ESS 

= 0.43 in training analysis—a tiny effect. 
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Novometric Analysis: Age dummy codes 

were created on the basis of statistical power 

analysis that indicated a minimum of 32 patients 

should be classified into each model endpoint to 

attain 90% power to detect a moderate effect. A 

total of 16 patients were 18 years old, and 43 

were 19 years or younger, so 19 years of age 

was selected as the minimum age for PA. And, 

31 patients were 63-64 years old, 95 were >62, 

so 62 years of age was selected as the maximum 

age for PA. Since all of the age categories 19 to 

62 inclusive were populated by data, PA created 

44 dummy age class variables. 

In novometric analysis the age dummy 

codes were treated as class variables and all 

other study variables were treated as attributes 

(assignment to treatment condition and gender 

are categorical).
2
 The best (lowest D statistic, 

stable in LOO analysis) four-, three-, and two-

strata models all emerged for an age cut-point  

of 61 years of age. The best four-strata model 

(D = 4.34) is presented in Figure 1. 

Figure 1: Best Four-Strata Model 

Number of

Radiology Tests

Prescriptions

11.78% are

> 61 Years

12.80% are

> 61 Years

1.79% are

> 61 Years

> 1      < 1

   p  < 0.0001

N = 1,229 N = 164 N = 279

Prescriptions

1.64% are

> 61 Years

p < 0.0001 p < 0.0001

N = 348

< 26 > 26 < 12 > 12

 

An interesting geometry underlies the 

model: number of prescriptions enters both the 

left- and right-hand branches emanating from 

the root attribute. On both branches “fewer” 

prescriptions accurately predicts that <2% of the 

patients are >61 years, and “more” prescriptions 

accurately predicts that >11% of the patients are 

>61 years. Fewer and more are identified as 26 

and 12 prescriptions on the left- and right-hand 

branches, respectively. Obviously the failure to 

parse prescriptions by the number of radiology 

tests, instead collapsing data, would mask this 

finding—a form of paradoxical confounding 

that can only be circumvented using the present 

methodology.
2,19

 Table 8 gives the confusion 

matrix for this model applied to the data. 

Table 8: Confusion Matrix: Four-Strata Model  

   Predicted Age 

                                        <61        >61 

             Actual      <61   1,293       450    74.18% 

               Age        >61        22         62    73.81% 

The CTA model accurately predicted 3 

of 4 patients who were 61 years or younger, and 

also 3 of 4 patients older than 61 years. The ESS 

of 47.99 indicates this is a high-moderate effect 

bordering the threshold (50) used to indicate a 

relatively strong effect.
2,8 

The best three-strata model identified (D 

= 3.59) is presented in Figure 2. 

Figure 2: Best Three-Strata Model 

Number of

Laboratory Tests

Assignment to

Treatment Group

11.06% are

> 61 Years

1.63% are

> 61 Years

8.54% are

> 61 Years

> 4      < 3

p < 0.0001

p < 0.001

Yes     No

N = 1,229 N = 82

N = 516
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The three- and four-strata models use 

different attribute sets—they have no attributes 

in common. Table 9 gives the confusion matrix 

for the three-strata model applied to the data. 

Table 9: Confusion Matrix: Three-Strata Model:  

   Predicted Age 

                                        <61        >61 

             Actual      <61   1,209       534    69.36% 

               Age        >61        20         62    76.19% 

The CTA model accurately predicted 7 

of 10 patients 61 years or younger, and 3 of 4 

patients older than 61 years. The ESS of 45.55 

indicates this effect is moderate strength.
2,8 

Finally, the best (and globally-optimal) 

two-strata model identified in this application 

(D = 2.82) is illustrated in Figure 3. 

Figure 3: Two-Strata, Globally Optimal Model 

Number of

Laboratory Tests

11.06% are

> 61 Years

2.06% are

> 61 Years

> 4          < 3

p < 0.0001

N = 1,311 N = 516

 

Note that while the right-hand branches 

of the models are identical, the left-hand branch 

of the two-strata model (Figure 3) integrates the 

patients disaggregated by the three-strata model 

(Figure 2) on the basis of their assignment to the 

control or treatment group. Thus the two-strata 

model has greater parsimony (it is 33.33% less 

complex than the three-strata model), but it also 

has lower predictive accuracy—in the present 

case, (45.55 – 41.52) / 45.55 x 100% = 8.85% 

lower ESS. Model efficiency
2
, the ESS-to-strata 

ratio, is 15.18 for the three-strata model versus 

20.76 for the two-strata model. Thus, compared 

to the three-strata model, the two-strata model is 

33% more parsimonious and [(20.76 / 15.18) – 

1] x 100% = 36.76% more efficient, however it 

returns 8.85% lower predictive accuracy. 

The D statistic integrates the dimensions 

of predictive accuracy and parsimony, thereby 

eliminating ambiguity concerning identification 

of the model that is closest (i.e., most similar) to 

a theoretically ideal model—physically located 

at the maximum orthogonal intersection of the 

accuracy and parsimony dimensions.
2
 For the 

two-strata model, the D statistic indicates that a 

minimum of 2.82 additional attributes having an 

equivalent ESS (i.e., as was obtained for number 

of laboratory tests) are needed to achieve an 

ideal (i.e., maximum accuracy, maximum parsi-

mony) model for this application. 

The confusion matrix for this two-strata 

model applied to the data is given in Table 10. 

Table 10: Confusion Matrix: Globally-Optimal 

Two-Strata Model  

   Predicted Age 

                                        <61        >61 

             Actual      <61   1,284       459    73.67% 

               Age        >61        27         57    67.86% 

The CTA model accurately predicted 3 

of 4 patients who were 61 years or younger, and 

2 of 3 patients older than 61 years. The ESS of 

41.52 reveals this is a moderate strength effect. 

Comments 

The literature is rich in correlation and 

regression results that are not statistically sig-

nificant, or that while statistically significant—

when considered singly in univariable designs, 

or together in multivariable designs—explain a 

functionally useless (often trivial) proportion of 

variance. Indeed, most published regression 

models are only accurate when used to predict 

dependent measure values at or near the sample 

mean.
2
 However, as seen presently, the absence 
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of a strong regression result doesn’t mean that 

there is no linear relationship between variables. 

The first example featured a correlation 

coefficient for which the associated p-value 

would easily satisfy the experimentwise crite-

rion for statistical significance in most research 

applications. However, this model explained an 

uninspiring one-eighth of the variation in the 

dependent variable—not accounting for the 

effect of chance (ESS=1.43). Using novometrics 

to explore the relationship between the variables 

a two-strata model emerged that produced a 

moderate effect (ESS=38.95)—correctly classi-

fying two of three people aged 64.5 years or 

younger, and three of four older people. 

The second example was a correlation 

coefficient for which the associated p-value 

would also easily satisfy the experimentwise 

criterion for statistical significance in most pub-

lished research. However, this model explained 

a deflating one-forty-second of the variation in 

the dependent variable—not accounting for 

chance (ESS=0.13). Using novometrics to study 

the relationship between the two variables, a 

two-strata model was identified that produced a 

moderate effect (ESS=25.67)—correctly classi-

fying nine in ten patients aged <62.2 years as 

having <22 annual office visits, and one in three 

older patients as having >22 annual office visits.  

In the ODA laboratory such findings—

which we suspect to be the rule rather than the 

exception, inspire our curiosity concerning the 

number and nature of discoveries that remain 

hidden, buried by debris created by the use of 

obsolete “data-mining” machinery. Discovering 

between-group effects such as those identified 

presently is crucial in causal inference research, 

for example to assess comparability of different 

study groups
20

 and identify variables to consider 

in propensity score development.
21,22

  

The third example was a MRA model 

for which the associated p-value likewise would 

satisfy experimentwise statistical significance 

criteria in most applications. Using ten ordered 

independent variables, and two categorical 

attributes, this model explained a mediocre one-

fifth of the variation in the dependent variable—

not accounting for the effect of chance (ESS= 

0.43). Furthermore, the conceptual meaning and 

translational potential of the model are unclear: 

statistically reliable positively weighted terms 

emerged for patient assignment to treatment 

condition and for number of prescriptions, and 

negatively weighted terms emerged for female 

gender, number of hospital admissions, and 

number of ER visits. 

When novometrics was used to explore 

the relationship between age and the attributes, a 

single age cut-point (<61 years) emerged that 

produced the best two- (ESS=41.52, D=2.82), 

three- (ESS=45.55, D=3.59), and four-strata 

(ESS=47.99, D=4.34) models. Application (e.g., 

in follow-up research) of increasingly complex 

models (i.e., models with an increasing number 

of strata) requires increasingly large training 

samples, because a minimum N is required in 

every model endpoint to achieve adequate 

statistical power for testing a priori hypotheses.
2
 

For example, it is easy to imagine how forcing a 

dozen attributes into an optimal model in the 

present study would create a blizzard of (near) 

empty endpoints, statistically insignificant 

effects, and zero-to-negative ESS values 

obtained in LOO analysis.
2,23

  

Finally, the third example involved both 

ordered and categorical attributes. Attributes 

may also all be categorical: such designs are 

traditionally analyzed using ANOVA.
24

 The 

method presented herein replaces reverse CTA 

methodology used with these designs to identify 

hierarchically, but not enumerated or globally 

optimal CTA models.
2, 25-27 
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