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Estimating causal effects for multivalued
treatments: a comparison of approaches
Ariel Linden,a,c*† S. Derya Uysal,b Andrew Ryanc and
John L. Adamsd

Interventions with multivalued treatments are common in medical and health research, such as when comparing
the efficacy of competing drugs or interventions, or comparing between various doses of a particular drug. In
recent years, there has been a growing interest in the development of multivalued treatment effect estimators using
observational data. In this paper, we compare the performance of commonly used regression-based methods that
estimate multivalued treatment effects based on the unconfoundedness assumption. These estimation methods
fall into three general categories: (i) estimators based on a model for the outcome variable using conventional
regression adjustment; (ii) weighted estimators based on a model for the treatment assignment; and (iii) ‘doubly-
robust’ estimators that model both the treatment assignment and outcome variable within the same framework.
We assess the performance of these models using Monte Carlo simulation and demonstrate their application with
empirical data. Our results show that (i) when models estimating both the treatment and outcome are correctly
specified, all adjustment methods provide similar unbiased estimates; (ii) when the outcome model is misspecified,
regression adjustment performs poorly, while all the weighting methods provide unbiased estimates; (iii) when the
treatment model is misspecified, methods based solely on modeling the treatment perform poorly, while regression
adjustment and the doubly robust models provide unbiased estimates; and (iv) when both the treatment and
outcome models are misspecified, all methods perform poorly. Given that researchers will rarely know which of
the two models is misspecified, our results support the use of doubly robust estimation. Copyright © 2015 John
Wiley & Sons, Ltd.
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1. Introduction

Interventions with multivalued treatments are common in medical and health research. Multivalued treat-
ments may include more than two discrete conditions (e.g., comparing the efficacy of competing drugs or
interventions) or multiple levels of one treatment (e.g., various doses of a particular drug). In experimental
studies, outcomes for multivalued treatments may be analyzed by simply regressing the outcome on a set
of indicator variables representing each treatment, followed by contrasts between the treatment variables
to estimate treatment effects. This minimal setup is sufficient to provide unbiased treatment effect esti-
mates when subjects are randomized. However, when analyzing observational data, investigators estimate
treatment effects by applying causal-inferential methods to control for confounders.

In recent years, there has been a growing interest in the development of multivalued treatment effect
estimators using observational data. The seminal work of Imbens [1] and Lechner [2] gave rise to this
burgeoning area by extending Rosenbaum and Rubin’s (1983) propensity score framework for binary
treatments to multivalued treatments. Subsequently, several methods designed for binary treatments–
including regression, matching, weighting, subclassification on covariates and stratification–have been
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reformulated to accommodate multivalued treatments [3–10]. These estimators have valuable applica-
tions in new priority areas of health services research, particularly comparative effectiveness research,
which seeks to compare the effects of multiple therapies [11].

This paper contributes to the literature by comparing the performance of commonly used regression-
based methods that estimate multivalued treatment effects based on the unconfoundedness assumption in
pretest–posttest studies. These estimation methods fall into three general categories: (i) estimators based
on a model for the outcome variable using conventional regression adjustment (RA); (ii) estimators based
on a model for the treatment assignment, using inverse probability of treatment weighting (IPTW) [12,13]
and marginal mean weighting through stratification (MMWS) [9, 14]; and (iii) ‘doubly-robust’ estima-
tors that model both the treatment assignment and outcome variable within the same framework, using
an augmented IPTW approach (A-IPTW) [15–17] and IPTW combined with RA (IPTW-RA) [8,18,19].
We examine these models using both Monte Carlo simulation and empirical data from a disease man-
agement program for patients with congestive heart failure that were exposed to one of three study arms.
From the literature on asymptotics of those estimators, if the treatment and outcome models are cor-
rectly specified, regression adjustment is more efficient than A-IPTW and IPTW-RA; and A-IPTW and
IPTW-RA are more efficient estimators than IPTW [18, 20]. To the best of our knowledge, there is no
general result on the relative efficiency of A-IPTW versus IPTW-RA. Similarly, MMWS has only been
contrasted with IPTW [9]. Therefore, the main goals of the Monte Carlo study are the following: (i)
to investigate and to contrast the finite sample properties of several estimation methods for correctly
specified models; (ii) to evaluate the finite sample properties of these approaches under model misspeci-
fication; and (iii) to investigate the doubly robustness property of A-IPTW and IPTW-RA. The empirical
example demonstrates the application of these estimators using data from a disease management
program evaluation.

While our paper covers a wide variety of methods existing in the literature, we do not include propen-
sity score matching and subclassification on covariates. In the binary treatment case, matching on the
propensity score serves a similar purpose to that of weighting and stratification. However, matching has
unique challenges when extended to the multiple treatment case. Conceptually, multiple treatment match-
ing either attempts binary treatment matching for all pairwise comparisons or it searches for triplets (or
multuplets) that match across the multiple treatment arms. The all-pairwise case is complicated by the
potentially different supports of the pairwise comparisons. The matched multuplets case suffers from the
‘curse of dimensionality’ that can make finding enough matched sets difficult unless the available dataset
is very large. Although propensity scoring is a great aid in both these cases, the likely greater effects
of lack of common support in matching suggest that a proper evaluation of multiple treatment match-
ing would require a different simulation study design than used here. The second approach, which is not
covered in our paper, is subclassification on covariates, as described by Cattaneo and Farrell [10]. As
the method is intrinsically nonparametric and does not entail estimating the propensity score or outcome
model, it would also require a different simulation study. Cattaneo and Farrell [10], however, provide a
comprehensive Monte Carlo comparison study of stratification on covariates versus matching methods
for binary treatments.

This paper is organized as follows: Section 2 describes the potential outcomes framework applied to
multivalued treatments. Section 3 introduces the various methods that are compared in the paper. Section 4
details the construction and results of the Monte Carlo simulation. Section 5 describes the empirical study
and reports the results, and Section 6 provides discussion and conclusions.

2. Potential outcomes framework for multivalued treatments

Consider N units that are drawn from a large population. For each individual i, i = 1,… ,N in the sample,
the triple (Yi,Ti,Xi) is observed. Yi is the outcome variable, Ti is the multivalued treatment variable, which
takes the integer values between 0 and K , and Xi represents the vector of pre-treatment covariates. Dit(Ti)
is the indicator of receiving the treatment t for individual i:

Dit(Ti) =
{

1, if Ti = t
0, otherwise.

For each individual, there is a set of potential outcomes (Yi0,… ,YiK). Yit denotes the potential outcome
for each individual i, for which Ti = t where t ∈ 𝔗 = {0,… ,K}. Only one of the potential outcomes
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is observed, depending on the treatment status.‡ Adopting the potential outcomes framework of Rubin
[21], the observed outcome, Yi, can be written in terms of treatment indicator, Dit(Ti), and the potential
outcomes, Yit:

Yi =
K∑

t=0

Dit(Ti)Yit. (1)

Thus, the individual-level treatment effect of treatment level m versus l is Yim−Yil; the difference of these
two potential outcomes. The population average treatment effect is given by the difference in the means
of the two potential outcomes:

Δml = E
[
Yim − Yil

]
= 𝜇m − 𝜇l. (2)

In a randomized experiment, Δml can be estimated using the sample means of observed outcomes. In an
observational study, however, estimation of Δml requires additional conditioning on Xi, which is assumed
to contain all confounders associated with both the treatment assignment mechanism and potential
outcomes. By conditioning on Xi, we assume that treatment assignment is as good as randomly assigned–
thereby replicating the randomization process. This assumption, also called weak unconfoundedness, as
defined by Imbens [1], can be formally stated as follows:

Yit⊥Dit(Ti)|Xi,∀t ∈ 𝔗,

where ⊥ denotes orthogonality or independence. This assumption requires that all determinants of treat-
ment level and of the outcome variable are observed. Clearly, this is a strong assumption and generally
requires a rich dataset, in application. A second assumption that is typically considered in conjunction
with unconfoundedness is that of a complete overlap in the distribution of covariates between treatment
groups. More specifically as follows:

0 < Pr
[
Ti = t ||Xi = x

]
,∀t ∈ 𝔗 and ∀x in the support of X.

Rosenbaum and Rubin [22] refer to the combination of unconfoundedness and overlap as strong ignor-
ability. Hence, under these assumptions, the conditional expectation of potential outcome for treatment
level t identified by conditional expectation of observed outcomes of individuals receiving treatment
t [23]:

E
[
Yit

||Xi

]
= E

[
Yit

||Dit(Ti),Xi

]
= E

[
Yi
||Dit(Ti),Xi

]
= E

[
Yi
||Ti,Xi

]
.

(3)

Thus, the unconditional means can be estimated by averaging these conditional means, that is, 𝜇t ≡

E
[
Yit

]
= E

[
E
[
Yit

||Xi

]]
. For high dimensional Xi, Imbens [1] introduced the generalized propensity score

(GPS) to serve as a practical alternative to conditioning directly on Xi in the case of multivalued treat-
ments. The GPS is defined as the conditional probability of receiving a particular level of the treatment
given the pretreatment variables, such that:

r(t, x) ≡ Pr
[
Ti = t ||Xi = x

]
= E

[
Dit(Ti)||Xi = x

]
. (4)

Identification of potential outcomes’ means is also possible, as in the binary treatment case, by weighting
observed outcomes by the conditional probability of the received treatment [1]:

E
[

YiDit(Ti)
r(t,Xi)

]
= E

[
Yit

]
. (5)

In practice GPS, r(t,Xi) is usually not known but can be estimated by discrete response models if the
multivalued treatment does not have a logical ordering, or by ordered response models if the treatment
corresponds to ordered levels [1].

‡Note that if K contains only two values, treatment reverts to the binary case.
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3. Approaches for causal inference in multivalued treatments

In this section, we briefly describe the approaches to causal inference in multivalued treatments, which
are valid if the uncounfoundedness and overlap assumptions are satisfied, with an emphasis on the imple-
mentation of the described estimators.§ We limit our discussion to the methods, which are compared in
this paper. It draws heavily on the technical discussion in the references provided, and we suggest that the
reader use those references for more background on, and formal derivations of, some of the properties of
the estimators described here.

3.1. Regression adjustment

If the uncounfoundedness assumption stated in the previous section is satisfied, that is, if we observe
all the factors associated with the treatment status as well as outcome variable, the conditional mean
of each potential outcome can be identified by the conditional mean function of the observed outcome
using the units that were exposed to the relevant treatment level (Equation (3)). Thus, multiple regression
is an estimator based on a model for the outcome variable. In this approach, the outcome is regressed
on a set of covariates separately for each treatment level, after which the predicted outcomes for each
subject and treatment level are computed using data only from the individuals receiving the relevant
treatment level. The average of these predicted values estimates the potential outcome means, which can
then be contrasted to estimate average treatment effects. More formally, using regression adjustment and
assuming unconfoundedness, we can define the conditional mean functions of the potential outcomes
as follows:

mt(Xi) = E
[
Yit

||Xi

]
= E

[
Yi
||Ti = t,Xi

]
= 𝛽0t + X′

i𝛽1t, ∀t ∈ 𝔗 (6)

Average treatment effects can then be estimated by contrasting estimated potential outcome means
between any two treatment levels:

Δ̂RA
ml = 1

N

N∑
i=1

(
𝛽0m + X′

i𝛽1m

)
−
(
𝛽0l + X′

i𝛽1l

)
= 1

N

N∑
i=1

(
m̂m(Xi) − m̂l(Xi)

) , (7)

where m and l may represent any two treatment levels in the set. While RA is a widely-used technique,
possible misspecifications of the functional form of the outcome model could bias the treatment effect
estimate [24]. Additionally, regression relies on extrapolation for estimation when the distribution of
covariates between treatment groups is substantially different. This last issue has provided support for the
use of weighting techniques as an alternative evaluation approach to RA, as they allow the investigator
to directly assess covariate balance between treatment groups.

3.2. Inverse probability of treatment weighting

The concept of inverse probability weighting originated in survey research over 60 years ago to adjust for
imbalances in sampling pools [25] and continues to be regularly used in complex survey designs. Over
the years, this weighting concept has also been extended to the study of treatment effects in observational
studies [see for example, 12, 13], where the weighting estimators are used to model the IPTW. Using
the sample counterpart of Equation (5), the estimator for the average treatment effect is given by the
following:

Δ̂IPTW1
ml = 1

N

N∑
i=1

YiDim(Ti)
r̂(m,Xi)

− 1
N

N∑
i=1

YiDil(Ti)
r̂(l,Xi)

= 𝜇̂m − 𝜇̂l, (8)

where r̂(t,Xi) is the estimated GPS, and m and l may represent any two treatment levels in the set [1].

§We do not discuss the variance estimation or asymptotic properties of the methods; however, interested readers can refer to
Cattaneo [17] for a detailed and formal discussion on efficiency of the methods.
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As in the binary treatment case, one can normalize the weights such that they add up to one, in order
to improve the finite sample properties [19]. The treatment effect estimator based on these normalized
weights can be written as follows:

𝜏 IPTW2
ml =

[
N∑

i=1

YiDim(Ti)
r̂(m,Xi)

/
N∑

i=1

Dim(Ti)
r̂(m,Xi)

]
−

[
N∑

i=1

YiDil(Ti)
r̂(l,Xi)

/
N∑

i=1

Dil(Ti)
r̂(l,Xi)

]
(9)

As Cattaneo [17] has shown, 𝜏 IPTW2
ml actually emerges from the generalized method of moments (GMM)

representation of the treatment effects. An advantage that IPTW estimators hold over RA is that the
degree of overlap in the distribution of covariates between treatment levels (i.e., covariate balance) can
be directly assessed using numeric summaries (such as standardized differences or variance ratios) and
graphical displays (such as box plots or Q–Q plots), as observed covariate balance is an essential criterion
for helping to ensure that treatment effects are valid in studies of treatment effects [26, 27]. However, a
limitation of the IPTW framework is that treatment effect estimates can be distorted when the overlap
assumption is violated, or more specifically, when individuals with no counterfactual information under
an alternative treatment condition receive a nonzero weight [14]. Another limitation of IPTW is that it
can perform poorly when the weights for a few subjects are very large. In this situation, the treatment
effect estimates may become very imprecise because of large standard errors [28].

3.3. Marginal mean weighting through stratification

Recently, an approach called marginal mean weighting through stratification [9,14] has been introduced
that combines elements of both propensity score stratification and IPTW. In general, this first entails
stratifying the analytic sample into quantiles of the generalized propensity score, and then generating a
weight for each individual based on their corresponding stratum and treatment assignment. The stratifi-
cation reduces bias in the observed covariates used to create the propensity score [29], and the weighting
standardizes each treatment group to the target population [30].

In the multivalued treatment setting, the MMWS approach is conducted as follows: first, the GPS is
estimated either by an ordered or mutinomial response models. Next, each GPS is stratified into equal
sized quantile categories. If an ordered response model is used, stratification is based on the estimated
probability of the base category, and if a multinomial response model is used, the sample is stratified
separately for each of the estimated probabilities. Typically, investigators divide the data into five strata,
as it has been shown that stratifying the propensity score into quintiles can remove over 90% of the
selection bias [22, 29]. Moreover, in large samples, further bias reduction may be achieved by adding
additional strata. Next, the marginal mean weights are computed based on the formula by Hong [14]:

MMW =
nst

× P̂r [T = t]
nT=t,st

(10)

where P̂r [T = t] is the estimated probability of assignment to treatment group t, that is, the proportion of
those actually receiving treatment t in the population, nsz

is the number of units in stratum st constructed
on the estimated probability of treatment level t, and nT=t,st

is the number of units in stratum st who were
actually assigned to treatment t.¶ Thus, the weight is proportional to the ratio of the number of individuals
in a given strata to the number of individuals within that strata actually receiving the treatment. The
unconditional mean is estimated in the usual fashion, with the MMWS weights used as sampling weights:

𝜇̂MMW
t =

∑N
i=1 MMWiYiDit(Ti)∑N

i=1 MMWiDit(Ti)
. (11)

Average treatment effects can then be estimated by contrasting estimated potential outcome means
between any two treatment levels.

Marginal mean weighting through stratification has been shown to be more accurate than IPTW in
estimating outcomes in the binary treatment case. Huang [31] used both techniques and found that the

¶Note that in an ordered treatment case there is no subscript for s, as the sample is stratified only once on the probability of the
base category.
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IPTW results were much more variable, and in many cases, did not agree with the other two methods
applied to the data (the stratification approach and hierarchical outcome regression). Similarly, Hong [9]
found through a comprehensive set of simulations that MMWS achieved lower bias and mean squared
error than IPTW when the propensity score model was misspecified. Hong [9] attributes the better per-
formance of MMWS over IPTW to the stratification component of the procedure. She argues that even
when the propensity score is misspecified, membership in the propensity score stratum remains consis-
tent for individuals in their respective treatment groups. Because MMWS is estimated as a ratio of the
sample sizes within each stratum, the MMWS estimate of treatment effect will therefore remain robust.

3.4. Augmented Inverse probability of treatment weighting

A class of estimators has evolved to model both the probability of treatment and the outcome simul-
taneously within the same framework, providing asymptotically unbiased estimates when only one of
the two models is correctly specified. These estimators are called ‘doubly robust’ because they provide
the investigator two opportunities to derive consistent treatment effects [13, 16]. While there are sev-
eral different doubly robust methods available [see 32, for a review of various DR approaches], the most
commonly-used approach is that credited to Robins and colleagues [13, 15, 16]. This estimator incorpo-
rates an augmentation term in the IPTW estimator so that the treatment effect estimator stays consistent
even if the GPS model is misspecified [15,20]. If the GPS model is correctly specified, the augmentation
term goes to zero in large samples [33]. The unconditional mean is thus estimated as follows:

𝜇̂A−IPTW
t = 1

N

N∑
i=1

[
YiDit(Ti)
r̂(t,Xi)

−
Dit(Ti) − r̂(t,Xi)

r̂(t,Xi)
m̂t(Xi)

]
. (12)

Essentially, 𝜇̂A−IPTW
t corresponds to Cattaneo’s efficient influence function estimator [17]. The model

can be operationalized in a three-step process: first, the parameters of the generalized propensity score
model are estimated and the IPT weights computed. Next, separate regression models of the outcome are
estimated for each treatment level, and the treatment-specific predicted outcomes for each individual are
obtained. Finally, unconditional means are estimated as in Equation (12), using the estimated GPS from
the first step, r̂(t,Xi), as well as the estimated conditional mean functions, m̂t(Xi). The contrasts of these
weighted averages provide the estimates for the ATE. The estimation procedure can also be reduced to
one-step estimation if the GMM approach is used. The GMM framework makes it easier to derive standard
errors, which are adjusted for estimation errors originating from the estimated GPS and outcome model.

Simulation evidence for the binary counterpart of this estimator suggests that, while the A-IPTW model
may be less efficient than regression adjustment when the outcome function is correctly specified, the A-
IPTW is more robust against misspecification compared with the single-model methods due to the doubly
robustness property [16].

3.5. Inverse probability of treatment weighted regression adjustment

The weighted regression estimator simultaneously estimates the GPS and the outcome model while using
weights that are equal to the inverse of the GPS. For certain classes of models used to estimate the
outcome, this method has been shown to be doubly robust [18,34]. Like the A-IPTW, the IPTW-RA model
can also be operationalized in a three-step process: First, the parameters of the generalized propensity
score model are estimated, and the IPT weights are computed as Dit(Ti)

r̂(t,Xi)
for each level of treatment. Next,

using the estimated IPTW, the outcome models in Equation (6) are fitted by a weighted regression for
each treatment level, and treatment-specific predicted outcomes for each individual are obtained using
the estimated coefficients from this weighted regression. Finally, the means of the treatment-specific
predicted outcomes are computed. The contrasts between these averages provide the estimates of the
ATEs [see 19, for an application of this method]. One can also rewrite the estimation procedure as a one
step estimation within a GMM framework. As in the previous method, the major advantage of the GMM
approach is in deriving standard errors, which automatically account for the estimation error from the
estimated GPS [8, 19].

An important consideration for all methods that assume unconfoundedness is the choice of covari-
ates selected for inclusion in the modeling process (in both the GPS and outcome model). There is a
wide variety of methods available for selecting covariates, ranging from ad-hoc manual selection to fully
automated data-driven techniques. Perhaps the most intuitive program in this class is that introduced by
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Catteneo et al. [35], which automatically processes the iterative tasks that an investigator would otherwise
perform manually. The program bfit written for use in Stata, generates a series of candidate models
ranging from a model including a single covariate to a model that includes a fully interacted polynomial
of the order specified by the user. The best-fitting model is then determined by the BIC or the AIC. For
those investigators interested in a more sophisticated approach to covariate selection, Farrell [36] intro-
duces a method based on the group lasso, which is particularly well-suited to multivalued treatments with
sparse data.

4. Monte Carlo simulations

4.1. Basic simulation design

We model four scenarios, where: (i) both the treatment (i.e., the GPS) and outcome models are correctly
specified; (ii) only the treatment model is correctly specified; (iii) only the outcome model is correctly
specified; and (iv) neither model is correctly specified. In each scenario, we draw 10,000 replications
from the data-generating process, repeated for sample sizes of 500 and 2000. In each replication, we
perform estimation and inference for the means of three treatment levels (t ∈ 0, 1, 2). At each iteration,
for each model and treatment level, we record the point estimates, the standard error, the squared error,
and a binary indicator noting whether the null hypothesis is rejected that the parameter equals its true
value, based on the model’s point estimate and standard error.

4.2. Data generating process

Following Cattaneo et al. [35], we draw samples from four data generating processes (DGPs). In all four
data generating processes, the GPSs are generated from a multinomial logit, and the outcome variable Y
is drawn from a Weibull distribution conditional on the treatment level t and the two covariates X1 and
X2. Both covariates are drawn from a uniform distribution over (−0.5, 0.5).

4.2.1. Data for the treatment model. As in Cattaneo et al. [35], there are three treatment levels (t ∈
{0, 1, 2}), and the true propensity score is a multinomial logit (with treatment level 0 as base level),

Pr
[
Ti = 0 ||Xi

]
= 1

qi
, Pr

[
Ti = 1 ||Xi

]
=

ex1i

qi
, Pr

[
Ti = 2 ||Xi

]
=

ex2i

qi
,

where
ex1i = exp

{
1.5

(
−.2 + X1i + X2i

)}
,

ex2i = exp
{

1.2
(
−.1 + X1i + X2i

)}
,

and qi = 1 + ex1i + ex2i. Given the probabilities and the [0, 1] uniform random variable ui,

Ti =
⎧⎪⎨⎪⎩

0, if ui ⩽ Pr
[
Ti = 0 ||Xi

]
1, if Pr

[
Ti = 0 ||Xi

]
< ui ⩽ Pr

[
Ti = 0 ||Xi

]
+ Pr

[
Ti = 1 ||Xi

]
2, otherwise

.

When using a standard multinomial logit model, the GPS is modeled as a function of X1 and X2 in
the correctly specified case and is modeled as a function of only X1 in the misspecified case (i.e., X2
is omitted).

4.2.2. Data for the outcomes model. A Weibull distribution for Y conditional on X was chosen because
it is asymmetric, continuous, and specifies the mean as a nonlinear function of the parameters of the
distribution. The Weibull distribution had a scale parameter 𝜂 and a shape parameter 𝜃, with a mean
𝜂Γ {(𝜃 + 1)∕𝜃}. By specifying functional forms for the distribution parameters 𝜂(X, t) and 𝜃(t), a class of
models for nonsymmetric distributions with analytic conditional means was obtained. These models are
conditionally heteroskedastic with variance 𝜂(X, t)2

(
Γ
[
{𝜃(t) + 2} ∕𝜃(t)

]
−
{
Γ
[
{𝜃(t) + 2} ∕𝜃(t)

]}
2
)
.

As in Cattaneo et al. [35], we generated Yi conditional on X1i,X2i and Ti with 𝜃i = Ti + 1 and 𝜂i =
(𝜃i∕3)(2 + X1i + X2i + X2

1i + X2
2i + X1iX2i). Thus, the regression of Yi on X1i, X2

1i, X2i, X2
2i and X1i × X2i
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corresponds to the correctly specified model, whereas the regression of Yi only on X1i and X2
1i corresponds

to the misspecified model. A covariate selection process was not implemented with these models in order
to maintain the fidelity of the correct and incorrect specification.

4.3. Model estimation

In this section, we describe the estimation and inference procedures for each model and repetition over the
four scenarios and two sample sizes. All simulations and analyses reported in this paper were conducted
using Stata version 13.0 (College Station, TX, USA) [37].

For each of the four scenarios, six different methods were used to estimate the potential outcome
mean for each of the three treatment levels. (i) Naı̈ve parameter estimates were derived by regressing the
outcome Y on indicator variables representing the levels of T . (ii) The RA estimator was implemented
using the teffects ra command as described in Section 3.1. (iii) The IPTW estimator with adjusted
weights was implemented using the teffects ipw command. (iv) MMWS estimates were derived by
dividing the sample equally into ten strata based on the estimated GPS, computing the MMWS weights
by implementing a user-written command for Stata mmws [38], and then by regressing the outcome Y
on indicator variables representing the levels of T , with the MMWS weights used as sampling weights
and applying robust standard errors. (v) The A-IPTW estimator was implemented using the teffects
aipw command, which corresponds to Cattaneo’s efficient influence function estimator [17]. (vi) The
IPTW-RA estimator was implemented using the teffects ipwra command. All Stata teffects
commands use a one-step GMM approach to provide correct standard errors of treatment effects taking
into account estimated GPS [33]. After each model was estimated, we tested the hypothesis that the
estimated coefficient was equal to the true value (for each given treatment level/scenario) using a Wald
test. We then generated a dummy variable equaling 1 when the P value < 0.05. Summing these provided
the false rejection rate–that is, the probability of committing a type I error.

4.4. Monte Carlo simulation results

Tables I–IV provide detailed results of the Monte Carlo simulations for each of the four scenarios. Each
table is laid out as follows: the first 8 columns of the table provide results when N = 500 , and the second
8 columns of the table provide results when N = 2, 000, in the same order. The first column indicates the
estimator, the second column provides the mean of the point estimates over the 10,000 repetitions, the
third column provides the percent relative bias in the mean point estimates, the fourth column provides
the mean squared error (MSE), the fifth column provides the standard deviation of the point estimates
over the 10,000 repetitions, the sixth column provides the mean of the estimated standard errors over the
10,000 repetitions, the seventh column provides the ratio of the standard deviation of the point estimates
to the mean of the estimated standard errors (SD/SE ratio), and the eighth column provides the mean of
the rejection indicators over the 10,000 repetitions. The standard deviation of the point estimates should
be as close as possible to the mean of the estimated standard errors resulting in a SD/SE ratio close to 1.0,
and the mean of the false rejection indicators should be 0.05. These metrics can be considered as either
of the following: (i) indicators of accuracy for the point estimates (i.e., bias, MSE), or (ii) indicators of
accuracy in the distributions and inference (i.e., SD/SE ratio, rejection rate).

When both the treatment model (estimating the GPS) and outcome model were correctly specified
(Table I), all estimation methods derived similarly accurate results for point estimates, bias, and MSE,
across all treatment levels. The SD/SE ratio and rejection rate were similar across all methods with the
exception of MMWS, which was consistently lower than all other methods. All adjustment methods were
superior to the naı̈ve estimates. In the case when both models were correctly specified, the consistency
of all methods becomes clear when the MSEs over the two different sample sizes are compared. As
expected, the ratio of MSEs for the two sample sizes were similar.

When the treatment model was correctly specified and the outcome model was misspecified (Table II),
regression adjustment always provided mean point estimates that were furthest from the true values,
together with the highest bias and MSE, across all treatment levels. All other adjustment methods pro-
vided point estimates close to the true values with nearly identical MSE. The MMWS estimator had lower
SD/SE ratios and mean rejection rates than the other estimators, while RA consistently had much higher
rejection rates. All adjustment methods were superior to the naı̈ve estimates. The smaller change in the
MSE for the RA estimates, even as the samples size increased, indicates that RA will not converge to the
true value if the outcome model is misspecified.

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 534–552
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When the treatment model was misspecified and the outcome model was correctly specified (Table III),
MMWS and IPTW provided point estimates that were far from the true values and performed poorly
on all accuracy metrics. Conversely, RA and the two doubly robust methods (A-IPTW and IPTW-RA)
provided point estimates very close to the true value and were close to the ideal on all other accuracy
metrics. All adjustment methods were superior to the naı̈ve estimates. In comparing the MSEs across the
two samples sizes, we see that MMWS and IPTW have lower proportional change as the sample size
increases, indicating that even for smaller sample sizes these methods do not converge to the true values.

When both the treatment and outcome models were misspecified (Table IV), all estimators performed
poorly and provided nearly identical poor estimates for all accuracy measures across all treatment levels.
Even so, all adjustment methods were still superior to the naı̈ve estimates. In comparing the MSEs across
the two samples sizes, it is evident that none of the estimators were consistent when both models were
misspecified.

5. Empirical example

5.1. Data

Our data come from a disease management program designed for patients with congestive heart failure
and implemented in a large health plan located in the western United States. Individuals with the condition
were contacted and invited to enroll in the program. Those agreeing to participate received one of the
following interventions: (i) periodic telephone calls from a nurse to discuss self-management behaviors,
or (ii) remote tele-monitoring (RTM), which entailed daily electronic transmission of the participant’s
disease-related symptoms to a database followed by a call from the nurse if symptoms appeared to indicate
the onset of an acute exacerbation. Assignment to either intervention arm was conducted by the program
nurse and based largely on a subjective assessment of the patient’s psycho-social needs, past levels of
health care utilization, and the patient’s preferred level of contact. The primary goal of the intervention
was to reduce avoidable hospitalizations [39]. Patients with congestive heart failure, but not participating
in the program, received their usual medical care and served as controls in this study. We use these
data solely to compare the treatment effect estimators, and our analyses do not represent a definitive
assessment of the program’s effectiveness.

The retrospectively collected data consist of observations for 1359 program participants who com-
pleted a full 12 months of the intervention and 6612 non-participants who were health-plan members
during the same period but were not exposed to the intervention. The sample was divided according
to treatment assignment: (i) 6612 non-participants, (ii) 654 participants in the telephonic intervention,
and (iii) 705 participants in the RTM intervention. Each individual in the dataset has 12 months of
pre-intervention data and 12 months of intervention-period data. Pre-intervention characteristics of partic-
ipants in the three study arms include patient demographic characteristics (age and gender), the Charlson
comorbidity index and associated comorbidities [40], and key measures of health care utilization (pre-
scription filled, office visits, emergency department visits, hospital admissions and hospital days). The
primary outcome for all analyses used in this paper is the number of all-cause hospitalizations in the
intervention year.

5.2. Evaluation approach

All analyses were performed using the same methods described in Section 3 but replacing ordinary least
squares with Poisson regression for the outcome model. The GPS was estimated using multinomial logis-
tic regression with the three-level treatment variable as the outcome. The choice of right-side variables
was determined using bfit in Stata as described in Section 3. To implement the MMWS estimator,
the study sample was divided equally into five strata based on the estimated GPS. For each estimator,
potential outcome means were estimated for each treatment level. Additionally, pairwise contrasts (treat-
ment effects) were estimated between all treatment levels, and across all estimators studied, using Stata’s
pwcompare command. pwcompare performs Wald tests using linear combinations of marginal linear
predictions and uses the delta method to estimate the variance. P values are then Bonferroni adjusted to
account for multiple comparisons.

5.3. Empirical results

Figures 1–3 show the kernel density estimates for the GPS for each treatment arm. In none of the plots
does there appear to be a probability mass near 0 or 1, and the three estimated densities have most of
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Figure 1. Overlap graph of the probability of assignment to the control condition. The density of the probability
of assignment to the control group is estimated by non-parametric kernel density estimation with a triangular
kernel and optimal bandwidth chosen by Stata and is plotted by treatment group. RTM, remote telemonitoring.
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Figure 2. Overlap graph of the probability of assignment to receive calls. The density of the probability of assign-
ment to the control group is estimated by non-parametric kernel density estimation with a triangular kernel and

optimal bandwidth chosen by Stata, and is plotted by treatment group. RTM, remote telemonitoring.

their respective masses in regions in which they overlap each other. Therefore, there is no evidence that
the overlap assumption is violated.

Table V presents the unadjusted pre-intervention characteristics of participants in the three study arms.
The absolute standardized mean difference (SMD) is used to assess covariate balance [26]. Many of the
SMDs are substantially greater than zero (optimal), and nine of the 69 SMDs are greater than the 0.25 cut-
off recommended by Rubin [41]. In general, the participants in the RTM intervention arm were older and
had a higher prevalence of comorbidities than the other two groups. However, all groups were compara-
ble on key measures of health care utilization. Table VI presents the same pre-intervention characteristics
of the study participants after weighting. As shown, all SMDs are much closer to zero, and no value is
greater than 0.25.

Table VII provides the potential outcome means for each treatment, by estimator. All adjusted models
offer nearly identical estimates for the control group’s hospital admissions and provide similar estimates
for the other two treatment arms. Interestingly, the naı̈ve model provides a lower point estimate for the
control group than the adjusted methods and higher point estimates for the two intervention arms as
compared with the adjusted methods, indicating a downward bias because of omitted variables for the
former and upward bias for latter.

Table VIII provides pairwise treatment effect estimates between all treatment arms, by estimator. Here,
treatment effects represent the difference between groups in all cause hospital admissions. The naı̈ve
model showed that both intervention arms (calls and RTM) had significantly higher rates of hospital

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 534–552
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Table V. Unadjusted baseline (prior 12 months) characteristics of program participants and non-participants
in a multivalued treatment study.

Absolute Standardized Differences

Variables Control Calls RTM Calls vs Controls RTM vs Controls RTM vs Calls

N 6612 654 705
Female 2976 (45.0%) 308 (47.1%) 343 (48.7%) 0.042 0.073 0.031
Age, mean (SD) 62.96 (15.77) 66.17 (14.55) 72.31 (12.42) 0.212 0.659 0.454
Charlson Comorbidity Index 2.64 (2.52) 3.28 (2.57) 3.67 (2.63) 0.250 0.399 0.150
Score, mean (SD)
Diabetes - non complicated 1723 (26.1%) 244 (37.3%) 281 (39.9%) 0.244 0.297 0.052
Diabetes - complicated 697 (10.5%) 122 (18.7%) 130 (18.4%) 0.231 0.226 0.006
Acute myocardial infarction 782 (11.8%) 112 (17.1%) 162 (23.0%) 0.151 0.297 0.147
Chronic lung disease 1468 (22.2%) 177 (27.1%) 251 (35.6%) 0.113 0.299 0.185
Liver disease - mild 396 (6.0%) 35 (5.4%) 32 (4.5%) 0.028 0.065 0.038
Liver disease - moderate/ 48 (0.7%) 3 (0.5%) 5 (0.7%) 0.035 0.002 0.033
severe
Cancer 784 (11.9%) 80 (12.2%) 97 (13.8%) 0.012 0.057 0.045
Cancer - metastic 140 (2.1%) 11 (1.7%) 10 (1.4%) 0.032 0.053 0.021
Rheumatoid Disease 228 (3.4%) 30 (4.6%) 26 (3.7%) 0.058 0.013 0.045
Cerebrovascular disease 952 (14.4%) 107 (16.4%) 132 (18.7%) 0.054 0.117 0.062
Peripheral vascular disease 874 (13.2%) 115 (17.6%) 150 (21.3%) 0.121 0.214 0.093
Renal disease 1083 (16.4%) 160 (24.5%) 214 (30.4%) 0.202 0.335 0.132
Dementia 164 (2.5%) 10 (1.5%) 8 (1.1%) 0.068 0.101 0.034
Hemiplegia or Paraplegia 130 (2.0%) 10 (1.5%) 11 (1.6%) 0.033 0.031 0.003
Peptic ulcer disease 105 (1.6%) 12 (1.8%) 13 (1.8%) 0.019 0.020 0.001
Prescriptions, mean (SD) 41.10 (37.42) 49.37 (38.90) 55.32 (37.18) 0.217 0.381 0.156
Office visits, mean (SD) 0.42 (0.93) 0.47 (0.83) 0.44 (0.84) 0.056 0.014 0.044
Emergency department visits, 0.49 (1.30) 0.51 (1.04) 0.44 (0.95) 0.017 0.046 0.072
mean (SD)
Baseline hospital admissions, 0.64 (1.15) 0.74 (1.07) 0.64 (1.04) 0.088 0.006 0.099
mean (SD)
Hospital days, mean (SD) 3.66 (11.61) 3.74 (8.60) 3.21 (16.09) 0.008 0.032 0.041

Note: 1All variables are reported as N (%) unless otherwise noted. 2 RTM, remote telemonitoring.

Table VI. Weighted baseline (prior 12 months) characteristics of program participants and non-participants
in a multivalued treatment study.

Absolute Standardized Differences

Variables Control Calls RTM Calls vs Controls RTM vs Controls RTM vs Calls

N 6612 654 705
Female 1227 (45.5) 1227 (45.9) 1182 (45.5) 0.007 0.001 0.008
Age, mean (SD) 64.11 (15.85) 64.50 (15.05) 65.72 (13.89) 0.026 0.109 0.086
Charlson Comorbidity Index
Score, mean (SD)

2.79 (2.59) 2.83 (2.43) 2.90 (2.51) 0.014 0.044 0.029

Diabetes - non complicated 764 (28.3%) 792 (29.6%) 757 (29.1%) 0.028 0.018 0.010
Diabetes - complicated 323 (12.0%) 332 (12.4%) 343 (13.2%) 0.013 0.037 0.021
Acute myocardial infarction 359 (13.3%) 368 (13.8%) 352 (13.6%) 0.014 0.008 0.006
Chronic lung disease 642 (23.8%) 638 (23.9%) 634 (24.4%) 0.001 0.014 0.013
Liver disease - mild 157 (5.8%) 164 (6.1%) 147 (5.7%) 0.013 0.007 0.021
Liver disease - moderate/ severe 19 (0.7%) 18 (0.7%) 22 (0.8%) 0.002 0.016 0.020
Cancer 325 (12.1%) 302 (11.3%) 312 (12.0%) 0.024 0.001 0.022
Cancer - metastic 54 (2.0%) 52 (1.9%) 50 (1.9%) 0.006 0.007 0.002
Rheumatoid Disease 95 (3.5%) 92 (3.4%) 96 (3.7%) 0.006 0.008 0.013
Cerebrovascular disease 405 (15.0%) 426 (15.9%) 444 (17.1%) 0.024 0.056 0.031
Peripheral vascular disease 388 (14.4%) 408 (15.3%) 396 (15.2%) 0.025 0.024 0.001
Renal disease 495 (18.4%) 493 (18.4%) 513 (19.7%) 0.002 0.035 0.031
Dementia 62 (2.3%) 70 (2.6%) 87 (3.3%) 0.022 0.063 0.046
Hemiplegia or Paraplegia 51 (1.9%) 56 (2.1%) 81 (3.1%) 0.014 0.078 0.068
Peptic ulcer disease 44 (1.6%) 42 (1.6%) 47 (1.8%) 0.007 0.013 0.019
Prescriptions, mean (SD) 43.24 (39.07) 43.92 (36.00) 46.22 (35.14) 0.019 0.082 0.062
Office visits, mean (SD) 0.43 (0.92) 0.44 (0.82) 0.44 (0.84) 0.015 0.012 0.003
Emergency department visits,
mean (SD)

0.49 (1.26) 0.50 (1.07) 0.47 (0.98) 0.015 0.014 0.033

Baseline hospital admissions,
mean (SD)

0.65 (1.15) 0.67 (1.02) 0.65 (1.07) 0.018 0.000 0.019

Hospital days, mean (SD) 3.64 (11.20) 3.47 (8.63) 3.50 (18.13) 0.017 0.009 0.002

Note: 1All variables are reported as N (%) unless otherwise noted. 2 RTM, remote telemonitoring.
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Figure 3. Overlap graph of the probability of assignment to receive remote telemonitoring. The density of the
probability of assignment to the control group is estimated by non-parametric kernel density estimation with
a triangular kernel and optimal bandwidth chosen by Stata, and is plotted by treatment group. RTM, remote

telemonitoring.

Table VII. Potential outcome means for each treatment level by causal estimator.

Estimator Mean estimate* SE z P > |z| [95% Conf. Interval]

Control
Naı̈ve 0.315 0.011 28.69 <0.001 0.294 0.337
Regression adjustment 0.329 0.011 30.69 <0.001 0.308 0.350
MMWS 0.330 0.011 30.08 <0.001 0.309 0.352
IPTW 0.331 0.011 30.51 <0.001 0.310 0.352
A-IPTW 0.330 0.011 30.53 <0.001 0.309 0.351
IPTW-RA 0.330 0.011 30.54 <0.001 0.309 0.351

Calls
Naı̈ve 0.531 0.035 15.18 <0.001 0.462 0.599
Regression adjustment 0.508 0.045 11.38 <0.001 0.421 0.595
MMWS 0.523 0.051 10.2 <0.001 0.423 0.624
IPTW 0.512 0.042 12.07 <0.001 0.428 0.595
A-IPTW 0.509 0.044 11.67 <0.001 0.423 0.594
IPTW-RA 0.510 0.044 11.68 <0.001 0.424 0.595

RTM
Naı̈ve 0.444 0.034 13.19 <0.001 0.378 0.510
Regression adjustment 0.352 0.037 9.4 <0.001 0.279 0.425
MMWS 0.344 0.035 9.74 <0.001 0.275 0.413
IPTW 0.360 0.038 9.54 <0.001 0.286 0.434
A-IPTW 0.345 0.034 10.18 <0.001 0.279 0.412
IPTW-RA 0.344 0.032 10.79 <0.001 0.282 0.407

Note: ∗Estimates represent all-cause hospitalizations during the intervention period. MMWS is
marginal mean weighting through stratification, IPTW is inverse probability of treatment weight-
ing, A-IPTW is augmented inverse probability of treatment weighting, and IPTW-RA is inverse
probability of treatment weighting with regression adjustment, RTM is remote telemonitoring.

admission than the control arm (P < 0.001 and P = 0.001 for calls versus controls, and RTM versus
controls, respectively), but no statistically significant difference between the intervention arms them-
selves. All of the adjusted methods trended toward similar results. Irrespective of adjustment method, the
arm receiving nursing calls had statistically higher hospital admissions than controls, the RTM arm was
not statistically different than controls, and the RTM arm had statistically fewer admissions than the arm
receiving nursing calls.
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Table VIII. Pairwise treatment effects (Bonferroni adjusted) by causal estimator.

Estimator Effect* SE z P > |z| [95% Conf. Interval]

Naı̈ve
Calls vs Control 0.215 0.037 5.87 <0.001 0.127 0.303
RTM vs Control 0.128 0.035 3.63 0.001 0.044 0.213
RTM vs Calls −0.087 0.049 −1.78 0.223 −0.203 0.030

Regression adjustment
Calls vs Control 0.179 0.046 3.93 <0.001 0.070 0.288
RTM vs Control 0.023 0.039 0.59 1.000 −0.070 0.115
RTM vs Calls −0.156 0.058 −2.69 0.021 −0.295 −0.017

MMWS
Calls vs Control 0.193 0.052 3.68 0.001 0.067 0.319
RTM vs Control 0.013 0.037 0.36 1.000 −0.075 0.102
RTM vs Calls −0.180 0.062 −2.88 0.012 −0.329 −0.030

IPTW
Calls vs Control 0.180 0.043 4.16 <0.001 0.077 0.284
RTM vs Control 0.029 0.039 0.74 1.000 −0.064 0.122
RTM vs Calls −0.152 0.057 −2.68 0.022 −0.287 −0.016

A-IPTW
Calls vs Control 0.179 0.045 4.01 <0.001 0.072 0.285
RTM vs Control 0.015 0.035 0.44 1.000 −0.069 0.100
RTM vs Calls −0.163 0.055 −2.97 0.009 −0.294 −0.032

IPTW-RA
Calls vs Control 0.180 0.045 4.03 <0.001 0.073 0.286
RTM vs Control 0.014 0.033 0.43 1.000 −0.065 0.094
RTM vs Calls −0.165 0.054 −3.09 0.006 −0.293 −0.037

6. Discussion

We used Monte Carlo simulations to compare the performance of several adjustment techniques with
estimate treatment effects in multivalued treatments and empirical data to demonstrate the application of
the methods. Our simulation results can be briefly summarized as follows: (i) when both the GPS model
(estimating the treatment) and outcome model are correctly specified, all adjustment methods provide
similarly unbiased estimates (ii) when the outcome model is misspecified, regression adjustment performs
poorly, while all the weighting methods provide unbiased estimates (iii) when the GPS is misspecified,
methods based solely on modeling the GPS (i.e., MMWS and IPTW) perform poorly, while RA and the
doubly robust models provide unbiased estimates, and (iv) when both the GPS and outcome model are
misspecified, all methods perform poorly.

Our finding that doubly robust methods consistently provide unbiased estimates when either the GPS
or outcomes model is misspecified is supported by other simulation studies examining a similar array
of adjustment methods applied to the binary treatment case [16, 20, 32, 42, 43] and in a recent study of
multivalued treatments [19]. Thus, from a practical standpoint, the investigator may be best served by
utilizing a doubly robust approach, as it is unlikely that he or she will be able to ascertain which of the
two models is misspecified. There currently appears to be no consensus as to which approach is most
appropriate if both models are misspecified [32, 43, 44].

Our results also indicate that the two doubly robust methods (A-IPTW and IPTW-RA) perform nearly
identically under the different conditions imposed upon them in the simulations. This similarity extends
to standard errors and interval coverage as well as bias. Therefore, investigators may rely on other consid-
erations when choosing between methods. For example, A-IPTW, as implemented in Cattaneo et al. [35],
can estimate quantile treatment effects, while IPTW-RA (as currently implemented in Stata) does not.
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On the other hand, IPTW-RA can estimate average treatment effects on the treated, whereas the current
A-IPTW method implemented in Stata does not (however a version recently written for R can estimate
the average treatment effects on the treated [45]).

In our empirical example, we observed that all adjustment methods generally produced qualitatively
similar results and all differed substantially from the naı̈ve estimates. While any of the adjusted models
would be an acceptable choice for analyzing these data, as mentioned above, utilizing a doubly robust
approach will increase the chances of deriving an accurate treatment effects estimate when either the GPS
or outcome model is misspecified. Thus, rather than estimating several models and hoping for a consis-
tent result, a more economical approach would be to rely on doubly robust estimators as the principal
evaluation approach.

Our study has limitations. First, we considered the performance of alternative multivalued treatment
estimators in the context of a specific data generating process. It is unclear how estimator performance
may vary across different data generating processes, such as heterogeneous treatments or with overlap
problems. Second, our simulation assumed strong ignorability. By itself, this assumption limits much
of the bias in observational studies (e.g., from confounding from unobservables). Thus, future research
should explore the performance of multivalued treatment estimators in the context of more diverse data
generating processes (including additional variable types and distributions), bootstrapping methods [46],
and violations to assumptions in the causal model. In particular, we have no reason to assume the simi-
larity of the methods would also hold for much smaller sample sizes where model parsimony might be
relatively more important.

In conclusion, the results of our comprehensive simulation study suggest that investigators should
consider doubly robust estimators as the principal evaluation approach in observational studies of multi-
valued treatments. Our findings are consistent with those reported for binary treatments. By supporting
the use of doubly robust estimation for multivalued treatments, our findings extend previous results from
binary treatment studies.
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