
Optimal Data Analysis     Copyright 2019 by Optimal Data Analysis, LLC 

Vol. 8 (April 22, 2019), 94-96  2155-0182/10/$3.00 

 

 

 

94 
 

Multi-Layer Perceptron Neural Net 

Model Identifies Effect in Random Data 
 

Ariel Linden, Dr.P.H. and Paul R. Yarnold, Ph.D. 
                                       Linden Consulting Group, LLC                     Optimal Data Analysis, LLC

Prior research contrasted the ability of different classification algorithms 

[logistic regression (LR), random forests (RF), boosted regression (BR), 

support vector machines (SVM), classification tree analysis (CTA)] to 

correctly fail to identify a relationship between a binary class (dependent) 

variable and ten randomly generated attributes (covariates): only CTA 

found no relationship. In this paper, using the same ten-variable N=1,000 

dataset, a Weka multi-layer perceptron (MLP) neural net model
1
 using 

its default tuning parameters yielded (area under the curve) AUC=0.724 

in training analysis, and AUC=0.507 in ten-fold cross-validation. With 

the exception of CTA, all machine-learning algorithms assessed thus far 

have identified training effects in completely random data. 

 

 

 

Predictive accuracy of CTA was compared with 

accuracy obtained using LR, RF, BR and SVM 

classification algorithms.
2,3

 In that research, an 

artificial dataset was created with 500 “group 1” 

and 500 “group 2” observations as well as ten 

randomly created continuous covariates (attrib-

utes) which by design have no association with 

the binary dependent (class) variable. Among all 

algorithms tested only CTA correctly failed to 

discriminate among random groups.  

 This study assesses whether a consistent 

finding occurs for models identified by MLP 

analysis using the default tuning parameters: 

learning rate 0.3, momentum 0.2, 500 training 

epochs, and hidden neurons equal to (10 inputs 

and 2 classes/2).  

As done previously
2,3

, receiver operating 

characteristics (ROC) analysis was conducted 

treating actual class status as the reference vari-

able, and treating predicted probabilities from 

the MLP model as the classification variable. A 

model that perfectly discriminates two groups 

has AUC=1.0, and a model that provides 

chance-level discrimination has AUC=0.50. 

Results obtained by MLP in training 

analysis are summarized in Table 1: CTA was 

unable to identify a model so reproducibility 

analysis wasn’t possible.
2,3

 The corresponding 

effect strength for sensitivity or ESS index (on 

which 0 is the classification accuracy expected 

by chance, and 100 is perfect accuracy) is ESS= 

39.4, indicating an effect of moderate strength.
4
 

Table 1: MLP Model Training Results 

                              Predicted Class 

                            Group 1   Group 2   Sensitivity 

Actual    Group 1    322          178            64.4 

Class      Group 2    125          375            75.0 

Predictive Value     72.0         67.8 
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Ten-fold cross-validation analysis results 

obtained for the MLP model are given in Table 

2 (ESS=0.8, a very-near-chance result). 

Table 2: MLP Model 10-Fold Results 

                              Predicted Class 

                            Group 1   Group 2   Sensitivity 

Actual    Group 1    272          228            54.4 

Class      Group 2    268          232            46.4 

Predictive Value     50.4         50.4 

The failure of the MLP model to repli-

cate in cross-validation reasserts the need to 

conduct reproducibility analysis and supports 

general constraint of CTA models to only retain 

attributes having stable effects in training and 

LOO analysis within the model.
5-7

 

This paper supports the results obtained 

in previous analysis
2,3

 identifying an important 

limitation of machine learning algorithms often 

used for predicting binary outcomes (e.g., to 

obtain propensity scores
8-11

). That is, an MLP 

model is likely to find relationships between 

variables which really don’t exist. These results 

should be independently replicated, and the 

limits of this phenomenon should be identified. 

Future research should assess the effect of the 

number of random attributes available to the 

algorithms, the number of significant digits used 

for measures (an index of precision of measure-

ment), and the number of class category levels 

in the application, in affecting the training and 

validity AUC. Research should also investigate 

applications involving randomized categorical 

attributes having different numbers of levels. 

Finally, the findings continue to support 

our recommendation to employ the ODA and 

CTA frameworks to draw causal inferences 

regarding treatment effects in observational 

data, and in data from randomized controlled 

trials.
8-24

 A large, ever-increasing body of 

evidence supports the use of ODA and CTA to 

evaluate the efficacy of health-improvement 

interventions and policy initiatives.
25-27
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